Symmetric or Sufficient for Return-to-Sport after ACL Injury?
Science Meets Practice Session
APTA Combined Sections Meeting 2018

Matthew Ithurburn, PT, PhD, DPT, OCS
University of Alabama at Birmingham, Department of Physical Therapy

Elizabeth Wellsandt, PT, PhD, DPT, OCS
University of Nebraska, Division of Physical Therapy

INTRODUCTION:

ACL Reconstruction after ACL Injury

- Standard of care for ACL injuries in the United States
- Generally expected to:
 - Restore joint stability
 - Allow for return to preinjury activity/sport

Poor RTS Outcomes after ACLR:

- Meta-analysis findings:
 - When examining return to any level of sport over any period of time:
 - 82% return
 - When examining return to preinjury level of sport participation:
 - only 63% return
 - When examining return to competitive sports:
 - only 44% return

Associated Sequelae:

Decreased Patient-Reported Knee Function

- Approximately one-third of individuals report an outcome of “less than acceptable” 2 years after ACLR
- 30% of individuals demonstrate KOOS-QOL scores <44/100 at 2 years

Increased Risk of 2nd ACL Injury

- High school age athletes: ~30% sustained 2nd ACL injury within 2 years of RTS
- Recent meta-analysis data: 23% of athletes <25 years old sustained 2nd ACL injury after RTS
What Typically Guides RTS Decisions?

- Post-operative timeline
- Medical team/surgeon opinion
- Objective measures of function/performance
- Of objective measures, most used:
 - Strength
 - Performance measures
 - Often evaluated using symmetry measures:

Debate Regarding Symmetry Measures after ACLR:

- Appropriate comparison for involved limb?
- Uninvolved limb de-conditioning?
- Bilateral injury effects?

Purpose:

- To examine the evidence in support of evaluating symmetry measures (strength, performance, movement) vs. evaluating absolute performance measures (sufficiency) after ACLR
- Make clinical recommendations for practical use of symmetry and “sufficiency” measures in RTS decision-making after ACLR

Symmetric:

Symmetry and Additional Knee Injury

Grindem 2016, Br J Sports Med

- RTS test battery completed at 6 and 12 months post-ACLR including:
 - Isokinetic quadriceps strength
 - SL hop tests
 - Self-reported function
- Tracked additional knee injuries over 24 months
- Lower quadriceps strength symmetry in those with reinjury (75.0% vs. 84.4%)
- When grouped by quadriceps LSI> or < 90%:
 - Quadriceps LSI >90%: 12.5% sustained reinjury
 - Quadriceps LSI <90%: 33.3% sustained reinjury

Kyritsis 2016, Br J Sports Med
• 158 male professional athletes tested prior to RTS
 • Isokinetic strength, hop and agility tests
 • Tracked over time for occurrence of graft rupture
• Discharge criteria:
 • Isokinetic quadriceps symmetry: >90% LSI
 • Single hop, triple hop, crossover hop: >90% LSI
 • Running t test: <11 seconds
 • Completed on-field sport-specific rehab
• Met all discharge criteria: 10.3% sustained graft rupture
• Did not meet discharge criteria: 33.3% sustained graft rupture

• Drop landing mechanics tested at time of RTS in 56 young athletes
• 2nd injury surveillance over 1 year post-RTS
• Side-to-side asymmetries in sagittal plane knee moment
 • Approximately 3 times higher odds of 2nd ACL injury (OR=3.3)

Symmetry and Return-to-Sport Success
Tool 2017, J Orthop Sports Phys Ther
• 115 young athletes previously cleared to RTS
• How many met recommended RTS criterion cutoffs?
 • Strength LSI, hop test LSI, IKDC scores
• Association between meeting cutoffs and continuing in sport participation over 1 year post-RTS
• Only 28% met both quadriceps and hamstring LSI >90%
• Those that met both quadriceps and hamstring LSI >90%:
 • Continued in sports participation over the year post-RTS at higher proportions (81%) than those that did not meet both cutoffs (60%)

Symmetry and Knee Function
Schmitt 2012, JOSPT
• 55 young athletes previously cleared to RTS after ACLR and 35 healthy controls
• Quadriceps strength tested at RTS
• Symmetric (HQ; Quad LSI≥90%), Asymmetric (LQ; Quad LSI<90%)
• Compared IKDC scores and hop test performance
• Asymmetric quad strength group – Lower IKDC scores at time of RTS
• Asymmetric quad strength group – Worse hop test performance at time of RTS

Ithurburn 2018, Knee Surg Sports Traumatol Arthrosc

• 76 young athletes tested at time of RTS clearance and 1 year later
• Quadriceps strength symmetry at RTS
 • Symmetric (HQ; Quad LSI≥90%)
 • Asymmetric (LQ; Quad LSI<90%)
• KOOS and IKDC at 1 year
• Asymmetric quad strength group at RTS – Lower KOOS-Sport and IKDC scores at 1 year
• Asymmetric quad strength group at RTS – Lower proportions of “functional recovery” at 1 year

• 85 patients after ACLR were tested at 6 months and 1 year post-surgery
• 4 single-leg hop tests at 6 months (single, triple, crossover, 6m-timed)
• IKDC at 1 year
• IKDC scores categorized as within/outside normal range of age- and sex-norm values
• Higher SL hop test symmetry at 6 months = increased odds of normal IKDC scores at 1 year

SUFFICIENT:

Review of Meta-Analyses:

• When examining return to competitive sports: only 44% return (Ardern 2011, Br J Sports Med)
 • Ipsilateral reinjury rate: 10%
 • Contralateral reinjury rate: 12%

Limb Symmetry Indexes (LSI’s): Reasons for concern
• Uninvolved limb de-conditioning
• Bilateral injury effects
 • Is the function of the uninvolved limb adequate for comparison?

Uninvolved limb de-conditioning

Appell 1993, Sports Med
• Muscle atrophy
• Immobilization: lose 3-6% strength/day

Thom 2001, Acta Physiol Scand
• Up to 40% decrease of initial 1 RM strength in 10 days

Bilateral injury effects – Neuromuscular alterations

• Lower neural excitability in **BOTH** limbs after ACL reconstruction compared to healthy control subjects

• Spinal-reflexive excitability and corticospinal excitability lower in both limbs compared to controls at 2 weeks post-ACLR

Pietrosimone 2015, J Athl Train
• 4 years post-op ACLR
• Hoffmann reflex higher **bilaterally** compared to controls (p=0.03)
 • Injured: 0.27 ± 0.12; Uninjured: 0.28 ± 0.16; Control: 0.20 ± 0.13
• Active motor threshold (AMT) higher in injured limb vs. controls
 • No difference in uninjured limb
• Lower quadriceps muscle activation in **BOTH** limbs after ACL injury

Lynch 2013, J Orthop Sports Phys Ther
• 49% with lower quad activation 1 months after ACL injury

Urbach 1999, Med Sci Sports Exerc
• 4 months post-injury (N=22 ACL, 21 healthy, all men)
• Quadriceps activation lower **bilaterally** compared to controls (p=0.026-0.031)
 • Injured: 83.9 ± 2.3%; Uninjured: 84.7 ± 2.2%
 • Controls: 95% CI: 90.0-93.7%

Pietrosimone 2015, J Athl Train
• 4 years post-op ACL reconstruction
• Quadriceps activation lower bilaterally compared to controls (p=0.002)
 • Injured: 88 ± 12%; Uninjured: 88 ± 12%; Control: 96 ± 4%

Hart 2011, Knee Surg Sports Traumatol Arthrosc

• 4 years post-op ACL revision
 • 76% with activation failure (<95%) in both reconstructed and contralateral limb
 • Injured: 83.9 ± 12.0%; Uninjured: 85.5 ± 9.5%

Bilateral injury effects – Quadriceps Strength

• 4 months post-injury (N=22 ACL, 21 healthy, all men) Urbach 1999 (Med Sci Sports Exerc)
 • Quadriceps strength (MVIC) lower bilaterally compared to controls
 • Injured: 153 ± 9.6 Nm (p < 0.001)
 • Uninjured: 189 ± 12.4 Nm (p = 0.057)
 • Controls: 216 ± 9.5 Nm

• Quadriceps LSI:
 • Presurgery: 80.4%
 • 6 months post-ACLR: 92.5%
 • Insufficient (per healthy controls) at 6 months post-ACLR despite acceptable LSI > 90%

Hiemstra 2007, Clin Biomech (Bristol, Avon)

• 3.5 years post-ACLR
 • Symmetric at all eccentric and concentric velocities
 • Insufficient (per healthy controls) at all eccentric and concentric velocities

Lynch 2013, J Orthop Sports Phys Ther

• 1 month post-injury
 • N=188; 63% men
 • Normal quad index (>90%) but bilateral quad activation failure

Performance Measures

• No worsening of uninvolved limb measures between 4 months and 6 months post-ACLR
 • Limitation: Fails to account for uninvolved limb changes between ACL injury and 4 months post-ACLR

Gokeler 2017, Orthop Traumatol Surg Res
• N=52; 7 months post-ACLR
 • 38 men (23.9±3.5 years); 14 women (21.7±3.5 years)
 • Compared both limbs to previous normative data (Myers 2014; Gustavsson 2006)
 • Matched for sex, age, type of sport
 • Interlimb differences for single hop (men & women) and triple hop (men only)
 • Both limbs lower than norms for single and triple hop

Performance Measures & Quadriceps Strength

Wellsandt 2017, J Orthop Sports Phys Ther
• 57% achieved 90% LSI’s (quad + hops)
• 29% achieved 90% of pre-operative uninvolved limb function (EPIC)
• 34% who met 90% LSI’s did not meet 90% EPIC measures
• 8 of 11 (4 ipsi, 4 contra) second ACL injuries achieved 90% LSI’s
• 6 of these 8 failed 90% EPIC

• 45 female patients (15 ACLR-U, 15 ACLR-B, 15 controls)
 • Completed testing after RTS clearance
 • Both limbs in ACLR-B and involved limb in ACLR-U had significantly lower quad strength than the uninvolved limb in ACLR-U and both limbs of control subjects

Alternate RTS Benchmarks:
• Collection of pre-injury data
 • Provides patient-specific data of functional and performance levels before injury
 • Limitations:
 • Time
 • Equipment and resources
 • Determination of important measures
 • Unrealistic in most practice settings
• Normative data:
 • Limitations:
 • Not widely developed
 • Lack comparisons for body size, sport position, etc.
 • De Carlo 1997 (J Sport Rehabil): Hop tests in high school athletes
 • Myers 2014 (Int J Sports Phys Ther): Hop tests in high school and collegiate basketball and soccer players
 • More stringent than 90% LSI's
 • Does 90% equal sufficient?
 • 10% considered to account for normal interlimb asymmetry Myer 2011 (J Orthop Sports Phys Ther), Wilk 1994 (J Orthop Sports Phys Ther)
 • Schmitt 2016 APTA-CSM Proceedings
 • N=97 patients (91% female); mean 17.2 years
 • Successful Sports Participation: 1 year post-RTS Tegner score >RTS Tegner score
 • IKDC > 95% & Single Hop for Distance > 95%
 • 5.4 times more likely to achieve successful sports participation
 • 6.9 times more likely in female patients

• RTS Test Battery
 • No single test encompasses all domains needed for return to sport (Adams 2012 J Orthop Sports Phys Ther)
 • Additional measures beyond strength & hops may be needed
 • Lentz 2012 (J Orthop Sports Phys Ther): 55% return to sports at 1 year post-ACLR
 • No knee effusion, no instability episodes, IKDC >93% had greatest likelihood to return to sport
 • Paterno 2017 (Sports Health): Activity and 2nd ACL injury after RTS
 • TSK-11 ≥ 17: 4X more likely to have lower activity levels
 • TSK-11 ≥ 19: 13X more likely to have 2nd ACL injury within 24 months

• Post-Operative ACL Protocols
 • Include bilateral strengthening and performance training
 • Progressive and targeted bilateral training, especially after symmetry attained
• Longer return-to-sport progressions
• Reinjury rate decreased 51% for every month RTS was delayed (up until 9 months) Grindem 2016 Br J Sports Med

CONCLUSIONS:
• Both symmetric and sufficient strength and performance are important
• Both limbs need to be trained during post-operative rehab
• Optimal Return-To-Sport Criteria???
 o Goal: Successful return to sport without further injury
 o Exact benchmarks to aim for still unknown
 o BUT-----Objective testing works!
 ▪ Minimum: Strength and hop performance testing

REFERENCES:

