An Update in Osteoarthritis of the Knee for the Aging Athlete

Gary J Calabrese, PT, DPT Scott Euype, PT, DPT,
Cleveland Clinic Rehabilitation and Sports Therapy
Cleveland Clinic, Cleveland, OH

A. Epidemiology
 a. Incidence
 b. Risk Factors
 i. Age
 ii. Obesity
 iii. Gender
 iv. Physical Activity
 v. Previous Injury

B. Articular Cartilage
 a. Type II collagen, 65–80% water
 b. Viscoelastic – deformation & recovery
 c. Load transmission
 d. Nutritional sources – diffusion of synovial fluid

C. Individualization:
 a. Lesion – location, size, depth, quality of other tissue
 b. Patient – age, BMI, health, goals

D. Surgical Approaches
 a. Micro-fracture
 b. OATS
 c. Osteochondral allograft transplant
 d. Osteochondral graft substitutes
 e. Autologus chondrocyte transplantation

E. Rehabilitation Strategies
 a. Joint Loading
 i. Joint loading determined by shear & compressive forces in all planes of motion.
 ii. Compression-Needed for resynthesis, destructive if excessive
 iii. Shear- Destructive

 b. Tibiofemoral Articulation
 i. Degeneration most common: 30 – 60° ROM
ii. Joint instability can expand zone

c. Articular cartilage Injury
 i. Usually uni-compartmental
 ii. Medial Compartment 10X more affected than lateral
 iii. 60 – 80 % of load across knee is transmitted to medial compartment

d. Rehabilitation via Biology
 i. Acute Period - limited joint loads
 ii. Proliferation/Graft integration
 iii. Protection- ↓pain/effusion, restore PROM and WB, initiate volitional control of quadriceps.
 iv. Sub-acute Period – initiate joint loads
 v. Remodeling – Matrix production & organization
 vi. PWB, FWB, FROM, normalize ADL and progress exercise.
 vii. Functional Period
 viii. Maturation – tissue reaches full maturation gradually add impact activities.

e. Rehabilitation Goals
 i. Maximize patient recovery while decreasing physical impairments and disability
 ii. Restore ROM, muscular strength and endurance
 iii. Facilitate cartilage healing and maturation while preventing further degeneration
 iv. Avoid arthrofibrosis with OATS due to larger incision

f. Factors affecting rehabilitation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Increased age - slower</td>
</tr>
<tr>
<td>BMI</td>
<td>> 30 – slower</td>
</tr>
<tr>
<td>Sport</td>
<td>High vs. low impact</td>
</tr>
<tr>
<td>Level of sport</td>
<td>Competitive vs. recreational</td>
</tr>
<tr>
<td>Psychological</td>
<td>Confidence through criteria progression</td>
</tr>
<tr>
<td>Defect size</td>
<td>Small vs. large</td>
</tr>
</tbody>
</table>
Defect location: WB vs. NWB, patella vs. condyle

Repair technique: Repair vs. restorative (↑WB)

Added injury: ACL, meniscal repair - slower

F. Phases of Rehabilitation
 a. Acute Inflammatory Phase
 i. Minimize Immobilization
 ii. PROM: Restricted by size/location of defect
 iii. Establish FULL passive extension
 iv. AAROM: Reciprocal cycle
 v. Contralateral leg or band assist
 vi. AROM: Unloaded to Loaded progression

 b. Acute Phase – Regain Motor Control
 i. Regain Motor Control
 ii. Quad MAI: 0 – 20° & 70 – 90° (MVIC @ 30°)
 iii. OKC: Safe ranges, usually start at 4-6 wks.
 iv. Kinetic chain strategies (hip, gastroc/soleus)
 v. Monitor volume, intensity closely
 vi. Low resistance, relatively high reps.

 c. Normalize gait
 i. Partial thickness debridement
 1. Early weight bearing with assistive device
 ii. Full thickness repair procedures
 1. Generally NWB 4-6 wks. (location dependent)

 d. Criteria for Progression
 i. ROM 0 – 100 deg.
 ii. No joint effusion
 iii. Good lower extremity control – No Quad. lag
 iv. Functional reach test: 30% height (anterior)
 v. Pain free gait without deviations
 vi. D/C crutches

 e. Sub-Acute – Progressive Loading
 i. Muscular Control
 1. OKC progression: Short @ Long lever arm
 2. Avoid lesion region (ROM)
3. Muscular Control
4. Concentric Eccentric loading
5. Static Dynamic loading
6. Introduce gravity reduced exe. / plyometrics
7. Proprioception (stable/ unstable, uniplanar / multiplanar)
8. Sports specific movement component integration

f. Functional Return Phase
 i. Continued organization and maturation of cartilage adapting to increased demands of sports movements.
 ii. Replicating sport specific movements
 iii. Maximize muscle power (plyometrics)
 iv. Progression: In-line running, figure 8, accelerations, decelerations, pivot and cutting.
 v. Increasing speeds.

g. Conclusions
 i. Respect effect of disuse on articular cartilage
 ii. Minimize immobilization, regain ROM ASAP
 iii. Criteria based progression that follows science
 iv. Regain muscular control: MAI OKC CKC
 v. Avoid region of lesion with cartilage
 vi. Avoid early flexion with meniscal repair
 vii. Weight bearing progression avoiding degenerative zone
 viii. AVOID COMBINATION OF SHEAR AND COMPRESSION IN REHABILITATION

G. Outcomes
 a. Impairment Based
 b. Functional Based
 c. Pain
 d. Total Knee Replacement
 e. Gender Differences
 f. Return Sport
BIBLIOGRAPHY

Farquhar et al. Persistence of Altered Movement Patterns During a Sit-to-Stand Task 1 Year Following Unilateral Total Knee Arthroplasty *Phys Ther.* 2008;88:567-579

Jinks et al. Measuring the population impact of knee pain and disability with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). *Pain.* 2002;100:55-64

Studenski et al. Gait speed and survival in older adults. *JAMA* 2011;305:50-58

Tonelli et al. Women with knee osteoarthritis have more pain and poorer function than men, but similar physical activity prior to total knee replacement. *Biol Sex Differ.* 2011;2:12.

Wood et al. Associations between physical examination and self-reported Physical function in Older Community-Dwelling Adults With Knee Pain. *Phys Ther.* 2008;88:33-42