Tissue Repair: Rehabilitation Guideline

Lane Bailey, PhD, PT

Disclosures

• US-DOD: “STaR Trial” Consortium

OUTLINE

1. Review the Biology of Soft-Tissue Injury & Healing
 • Muscle
 • Tendon
 • Ligament
2. Applied Rehabilitation Principles
 • Acute & Sub-Acute Injury Management
 • Post-Operative Exercise Progression

TISSUE INJURY

• Prognosis based on several factors
• Many Classification Systems Exist
• MLG-R: Valle Sports Med 2016
 • mechanism of injury (M)
 • location of injury (L)
 • grading of severity (G)
 • number of re-injuries (R)
• Collective severity = Delayed/Poor Prognosis

MUSCLE INJURY

• Muscle Force Thru ECM
• Mechanical Connection
 1. Epimysium
 2. Perimysium
 3. Endomysium
• ECM Injury Linked to Prognosis
• Central Tendon Injury = Poorer Outcomes

TENDON & LIGAMENT INJURY

• Key Features of Injury
 • Disorganized collagen fiber arrangement
 • Increased non-collagenous ground substance
 • Increased number and rounded morphology of the tenocytes
 • Fatty deposits and ectopic ossification
 • Ultimately decreased load capacity
 • Can create acute or chronic injuries
HEALING TIMELINES

- Inflammation*
- Proliferation
- Maturation
- *Can occur at any time

"We want to Facilitate Protein Synthesis"

HEALING CAPACITY

- Blood Supply!!!
- Use knowledge of blood supply density as a guide
- Basis of many rehab protocols
- Influencing by patient specific factors (comorbidities)
- Not always good! – Neovascularity
- Mechanical stimuli can cause acute tissue perfusion to augment healing
- Tissue Matters ->

Key Considerations

Location Matters

- Intra-articular vs Extra-articular
- Intra-synovial vs Extra-synovial
- Acute Healing Requires a Provisional Scaffold (Blood Clot)
- Several factors influence the body’s ability to form clot
- Synovial fluid may wash away Clot Formation Murray JOR 2013

LIGAMENT INJURY

Murray JBJS 2000 & JOR 2007; Frank JOR 1983

- ACL & MCL Fibroblast
- Comparing in-vitro cell culture
- Results:
 - Similar Cell Proliferation
 - Similar Healing Potential

LIGAMENT REPAIR

SOFT-TISSUE HEALING

- Muscle, Ligament & Tendon are mechanosensitive tissues
- Mechanical Forces are Converted To Biochemical Signals
- Biochemical signals elicit cellular responses by the local cells
- Similar mechanical and biological signals are involved in homeostasis, inflammation and repair
- Understanding mechanobiology in tissue development, homeostasis and repair is critical to designing therapies for soft-tissue injury
STRESS MANAGEMENT

TISSUE STRESS

LOAD TOLERANCE

ENVELOP OF FUNCTION

• Use Lab & Basic Science Research to determine stress at a tissue level
• Use physics & clinical judgement when no evidence available
• Consider All Tissues Involved
 • What’s good for one tissue may not be for another
 • i.e. Graft vs Harvest Site

Enjoy!

ENVELOP OF FUNCTION

• “Envelope of Function” Dye CORR 1996
• Capacity of joints and tissues to accept, transfer, and dissipate loads
• 3 Zones
 1. Homestasis
 2. Supraphysiologic Overload
 3. Structural failure

Dye CORR 1996

“The upper limit of a given tissue’s envelope of function is a threshold between homostatic loading and loading sufficiently great so as to initiate the complex biologic cascade.”

Table 1. ACL Loading Scale

<table>
<thead>
<tr>
<th>Activity</th>
<th>ACL Load (N)</th>
<th>ACL Strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squat/Sit to Stand</td>
<td>20</td>
<td>3.6 - 4.0</td>
</tr>
<tr>
<td>Wall Squats</td>
<td>0 - 90</td>
<td></td>
</tr>
<tr>
<td>Bicycle</td>
<td>2.0</td>
<td>38</td>
</tr>
<tr>
<td>Step Down</td>
<td>2.5 - 2.6</td>
<td></td>
</tr>
<tr>
<td>Stair Climbing</td>
<td>146 - 25</td>
<td>2.8 - 2.8</td>
</tr>
<tr>
<td>Single Leg Squat</td>
<td>124 - 142</td>
<td>3.2 - 4.0</td>
</tr>
<tr>
<td>Walking</td>
<td>303 - 355</td>
<td>15 - 20</td>
</tr>
<tr>
<td>Lachman test</td>
<td>-</td>
<td>3.0 - 3.7</td>
</tr>
<tr>
<td>Isokinetic Knee Extension</td>
<td>248 - 349</td>
<td>2.8 - 3.8</td>
</tr>
<tr>
<td>Isometric Knee Extension</td>
<td>396 (@ 35-40°)</td>
<td>2.8 - 4.4</td>
</tr>
<tr>
<td>Double Leg Drop Landing</td>
<td>220 - 33</td>
<td>33 - 48</td>
</tr>
<tr>
<td>Single Leg Running Stop</td>
<td>1294 - 25</td>
<td>15 - 20</td>
</tr>
</tbody>
</table>

Reproduced from Escamilla (JOSPT 2012).

*pACL Load is defined as the amount of external force applied to the ACL in pounds with the stated activities.

*Strain percentage represents the amount of linear change (as a percentage) of original resting ligaments length.

Escamilla AJSM 2010
Graded Progression

![Theoretical Load Chart](chart.png)

Acute Management

1. **Protection, Rest, Ice, Compression, Elevation**
2. Return to Homeostasis!!!
3. Create an Ideal Healing Environment
 - Unloading of injured structures
 - Facilitate vascular mobility (dependent vs elevated position)
4. Avoid further tissue damage
5. Begin with muscle activation in a safe environment which doesn’t elicit inflammatory response

Early Management

- Return to the Principle Foundations of Rehab
 1. PROM
 2. AAROM
 3. AROM
 4. Resistive ROM
 5. Functional Movements

- Low load activity:
 - Isometrics - Quad sets, Scap Retractions, table exercises are ok!
 - Move criteria to progression
 - Move don’t get

Tissue Irritability

- Utilize Irritability Scales* to Monitor Load Tolerance
 - Be a Good Historians
 - Signs & Symptoms
 1. Numeric Pain Rating Scales
 2. Recent history of faction
 3. Duration and nature of symptoms
 4. Joint effusion (swell tests, etc.)
 5. Current clinical assessment
 6. Sleep disturbance & Appetite

*Can’t rely on these solely to make decisions

Acute Post-Op = ADL’s

1. Restore functional PROM
2. Initiate muscle activation safely
3. Resume Joint & Soft-Tissue Loading when appropriate
4. Loading is different in this phase
 - Dosing is likely ok to perform on a daily basis – NM Control
 - Repeated cycles may be needed to facilitate tissue compliance
 - ...Or they may be contra-indicated!
5. Physician Communication is key to understanding tissue load tolerance

Post-Op - Phase 1 is Key!

- “Normal Knee” Ambulation
- No Need to Rush Past This Phase!
EARLY STRENGTHENING BFR

1. Increase strength & hypertrophy at 30% MVIC
2. Shown to improve muscle protein synthesis
3. Avoiding excessive tissue loading in compromised settings
4. Diminish Muscle Atrophy after injury
5. Strong Basic Science Evidence

SUMMARY

1. Understand healing principles of various soft-tissues
2. Consider differences in healing capacity based on location, severity and vascular supply
 - Age, comorbidities, activity loading
3. Develop a strategy for monitoring tissue irritability
4. Utilization of rehab aids to augment therapeutic effects

HEALING CAPACITY

- Blood Supply!!!
- Use knowledge of tissue blood supply density
- Neovascularity – Not always good!
 - Signs of poor or compromised healing
- Acute perfusion is needed and produced by mechanical stimuli in PT