WHAT IS INSTABILITY?

- Resistance of musculoskeletal tissues to forces applied to a joint
 - Control of joint motion
 - Contributions from subsystems
 - Passive
 - Active

PASSIVE STABILITY STRUCTURES

- Non-contractile
 - Osteology/Arthrology
 - Labrum
 - Joint capsule
 - Ligamentous structures

HIP DYSPLASIA

- Lateral center edge angle < 20°
- Shallow acetabulum
- Malformed femoral head
- Angle of inclination
 - Coxa valga (>140°)

ANTERIOR & POSTERIOR HORN ANGLE

- Moderate relationship to acetabular anteversion

OPENING ANGLE OF THE INFERIOR ACETABULUM

LABRUM

- Deepens socket 20%
- Provides “suction” of the joint
- Proprioception
- Nociception

iliofemoral ligament

- Lateral band tightens in flexion + adduction
- Controls external rotation in flexion
- Controls internal and external rotation in extension

pubofemoral ligament

- Blends anteriorly with medial band of iliofemoral ligament
- Controls external rotation in extension
- Forms sling inferior to femoral head

ischiofemoral ligament

- Courses posterior to anterior
- Controls internal rotation in flexion and extension
ZONA OBICULARIS

LIGAMENTUM TERES
• MARTIN RL, KIVLAN BR, CLEMENTE FR. A CADAVERIC MODEL FOR LIGAMENTUM TERES FUNCTION: A PILOT STUDY. KNEE SURG SPORTS TRAUMATOL ARTHROSC. NOV. 2012

MODEL FOR HIP INSTABILITY
• OSSEOUS
• CONGRUENCY
• CAPSULE + LIGAMENTS
• LAXITY
• LABRUM

ETIOLOGY OF HIP INSTABILITY
• TRAUMATIC
• ATRAUMATIC
• AQUIRED
• MICROTRAUMA
• FEMOROACETABULAR IMPINGEMENT
• IATROGENIC

ATRAUMATIC HIP INSTABILITY
• INJURY OCCUR FROM RECURRENT TWISTING OR PIVOTING WITHOUT FEMOROACETABULAR IMPINGEMENT (MCCARTHY, NOBLE ET AL. 2001)
• ATHLETES MAY NOT NEED EXCEED THEIR NORMAL JOINTROM (DY, THOMPSON ET AL. 2008)
• LATERAL ROTATION AND ABDUCTION GENERATE SUBSTANTIAL TENSILE STRAINS IN THE ANTERIOR PART OF THE ACETABULAR LABRUM.

ATRAUMATIC HIP INSTABILITY
• GOLF
 • LEAD LEG FINISHES IN POSITION OF NEAR MAXIMUM MEDIAL ROTATION
 • HIGH MEDIAL ROTATIONAL VELOCITY (LEAD LEG)
 • LATERAL ROTATIONAL VELOCITY (TRAIL LEG) (GULGIN 2009)
 • LATERAL ROTATION AND EXTENSION PLACE DAMAGING TORSION TO THE ANTERIOR LABRUM WITHOUT EXCEEDING NORMAL ROM (MASON 2001)

ATRAUMATIC HIP INSTABILITY
• OVERHEAD ATHLETE
 • BATTING
 • 714 DEG/SEC OF ROTATIONAL VELOCITY (WELCH, BANKS ET AL. 1995)

ATRAUMATIC HIP INSTABILITY
• OVERHEAD ATHLETE
 • THROWING
 • LEAD LEG – MEDIAL ROTATION AND FLEXION
 • TRAIL LEG – ROTATIONAL TORQUE, RAPID LATERAL ROTATION AND EXTENSION
• BALLET
 • IMPINGEMENT AND SUBLUXATION ARE FREQUENTLY OBSERVED IN
 TYPICAL BALLET MOVEMENTS EVEN IN NORMAL MORPHOLOGY
 (CHARBONNIER, KOLO ET AL.)

IMPINGEMENT = INSTABILITY?
 • HIGH RATES OF FAI ARE PRESENT IN PATIENTS WITH HIP INSTABILITY.
 • FAI MAY PREDISPOSE THE HIP TO INSTABILITY
 • ANATOMIC CONFLICT LEVERING THE FEMORAL HEAD POSTERIORLY.
 • (CANHAM, 2016)

ACTIVE + NEURAL SUBSYSTEMS

MUSCLES OF THE ANTERIOR HIP
 • ILIOPSOAS:
 • MOST POWERFUL HIP FLEXOR.
 • ATTACHES TO THE ANTERIOR HIP CAPSULE

PECTINEUS:
 • ADDUCTOR, FLEXOR AND INTERNAL ROTATOR
 • ATTACHES AND SUPPORTS ANTERIOR HIP CAPSULE

RECTUS FEMORIS:
 • FLEX THE HIP AND EXTEND THE KNEE

MUSCLE FUNCTION
 • TENSOR FASCIA LATA (TFL):
 • COUNTERACTS THE GLUTEUS MAXIMUS ON THE ILIOTIBIAL BAND.
 • ASSISTS IN FLEXING, ABDUCTING, AND INTERNALLY ROTATING THE HIP
 • TROCHANTERIC BURSEAS DEEP TO THIS MUSCLE.

GLUTEUS MAXIMUS:
 • POWERFUL EXTENSOR AND EXTERNAL ROTATOR
 • MOST EFFECTIVE WHEN THE HIP IS FLEXED.

GLUTEUS MEDIIUS:
 • MAIN ABDUCTOR OF THE HIP
 • IMPORTANT IN STABILIZING THE PELVIS.

GLUTEUS MINIMUS:
 • INTERNAL ROTATOR?

• DEEP ROTATORS
 o IN LINE TO CREATE COMPRESSION
Comprehensive Evaluation of Hip Instability

- The injury pattern of the shoulder known to occur in the throwing athlete can be used to understand the issues of focal rotational instability of the hip.
- The biomechanics of throwing leads to progressive laxity of the anterior capsule in the shoulder.
- Similarly, excessive repetitive forceful hip rotation can contribute to focal rotational instability.
- The most common injury pattern is repetitive forceful hip external rotation beyond the limit of normal motion leading to iliofemoral ligament laxity.
- In the presence of instability that results from the laxity, abnormal loading of the anterior-superior labrum can occur resulting in subsequent labral chondral damage.

Comprehensive Evaluation of Hip Instability

- A shallow acetabulum resulting from dysplasia is the most familiar deformity that can contribute to instability.
- Rotation deformities of the femur and acetabulum in the transverse plane may also lead to excessive loading of capsuloligamentous structures.

- The labrum is critical to joint stability and if damaged from trauma and/or impingement the pathology associated with instability could be accelerated.
- Labrum acts as a buttress to mechanically prevent excessive joint movement and enhance the congruency of the femoral head and acetabulum.
- It establishes a seal, maintaining the negative intra-articular joint pressure.

- Capsuloligamentous structures will be placed under abnormally high

Neuromuscular control of the hip and lumbopelvic regions is important to assess

Comprehensive Evaluation of Hip Instability

- Deviations from normal transverse plane orientation (anteversion or retroversion) of the acetabulum and femur may lead to progression of this process.
- As this process progresses the severity of the labral tear and complaints of instability could worsen.
- When the hip is subject to higher physiologic demands, neuromuscular control is a crucial component of joint stability and function.
- As dynamic stability of the hip is compromised, weight-bearing forces will be unevenly distributed potentially leading to the progression of labral pathology.

Instability Algorithm

Comprehensive Evaluation of Hip Instability

- Sports that require excessive hip external rotation may be at risk for anterior focal rotation instability.
- The risk factors for anterior focal rotational instability include:
• Shallow acetabulum
• Excessive acetabular anteversion
• Excessive femoral anteversion.

• Capsular laxity may be evident in those with increased hip external rotation range of motion when compared to the opposite side.
• Those with signs of general ligament laxity and neuromuscular deficits leading to poor lumbo-pelvic control may be at greater risk for instability.

Comprehensive Evaluation of Hip Instability
• Subjective complaints/History
• Objective Measures
• Special tests
• Static Balance/Dynamic Stability tests Functional Performance Tests

Comprehensive Evaluation of Hip Instability
• Subjective
 Diffuse extra-articular
 • Myofascial pain
 • Psoas
 • Rectus femoris
 • Gluteus Medius/Minimus
 • Piriformis/Short Rotators
 • Activities that increase symptoms
 • Weight bearing with forced ER beyond end range
 • Over head throwing
 • Gymnastics
 • Deep squatting
 • ER and ABD in flexion
 • History joint instability in other joints

Comprehensive Evaluation of Hip Instability
• Gait
 • Toe in vs Toe out
 • Trendelenburg
 • Miserable malignment
 • Valgus
 • Internal rotation
 • Pronation

Lumbosacral Spine
• Similar to the evaluation process for the shoulder where ruling-out radiating symptoms from the cervical spine should be first considered, pain radiating from the lumbosacral spine should be first.
 • Miserable malignment
 • Valgus
 • Internal rotation
 • Pronation

Secondary to the kinetic relationship between the hip and lumbosacral complex, conditions in these areas commonly coexist.

• This holds particularly true in more chronic cases where muscle
dysfunction (i.e. gluteus medius) causes gait deviations that negatively affect the lumbosacral spine.

Lumbosacral Spine

- If tests are positive for a lumbosacral disorder, treatment may be directed toward this area.
 - The effect of this treatment on hip pain can be evaluated and modified accordingly.
- In our evaluation and treatment of lumbosacral problems we use a classification system includes categories for:
 - manipulation/mobilization
 - Stabilization
 - specific direction preference exercises (flexion, extension, or lateral shift)
 - traction.

 • Delitto A, 1995.

Manipulation/ Mobilization

- The technique involves positioning the patient, with respect to the lumbar spine, in side bending toward and rotation away from the painful side.
- A force directed anterior to posterior is applied to the ipsilateral anterior superior iliac spine in Grade 5 thrusting maneuver.
 - It should be noted before this manipulation is applied contraindications for a thrust mobilization must be thoroughly cleared.

Eval and Treat Extra - Articular Pathology

- Flexibility/ROM
 - Thomas
 - Obers
 - Adductors
- Strength
 - Abductors
 - External rotators
 - Extensors

Eval and Treat Extra - Articular Pathology

- Myofascial pain
 - Psoas
 - Rectus femoris
 - Gluteus Medius/Minimus
 - Piriformis/Short Rotators

Muscle Strain

- Pain commonly located near the muscle tendon junction.
- Musculotendinous disorders including muscle strains and/or tendon disorders should be:
 - Painful with palpation
 - Stretching
– Resisted movements directed at the involved muscle and/or tendon.
 • If the source of pain is solely from intraarticular origin, palpable pain is rarely present.

Classify injury
 – Acute
 – Sub-acute
 – Chronic/remodeling

Chronic/Remodeling
• Criteria for chronic/remodeling phase
 – Range of motion equal to uninvolved side
 – Strength approximately 75% of uninvolved side.

 • Pain with resisted testing should be minimal.

Treatment
 – Emphasize eccentric exercises and sport specific training
 – Throughout this rehabilitation process, strengthening of the lumbopelvic stabilizing muscles should be encouraged.
 – However, educating the patient to engage these muscles during sport specific activity we find to be critical.

Posterior Hip Pain
• Assessment
 – Seated palpation
• Sub-Gluteal Nerve Entrapment
• Hamstring Syndrome
• Sub-Gluteal Nerve Entrapment
 – Active Piriformis
 – Passive Piriformis
• Hamstring Syndrome
 – Active-30 and Active-90

Posterior Hip Pain
• Sub-Gluteal Nerve Entrapment
• Active Piriformis
• Passive Piriformis

Impingement: Location of Labral Tear
• DIRI
• DEXRI
• Posterior Rim

Hypermobility
• Beighton's scale
• Range of motion
 – ER/IR
• Distraction
• Anterior instability
• Prone External Rotation Test
• Log Roll
• Ligament Teres Test
• Squat test

Ligament Teres Test
• Based the findings of the previously described string model a clinical test was developed to assess for LT lesions.
 • This LT test was performed with the hip moved to 70° flexion and 30° short of full abduction.
 • The hip was then internally and externally rotated through full range of motion assessing for reproduction of pain.
 • Using arthroscopy as the gold standard in identifying LT lesions the test was found to have a sensitivity and specificity values of .90 and .85, respectively.
 • The authors concluded that partial LT tears could be identified by the Ligament Teres Test.

 • It should be noted that the one subject is this study with a complete tear had a negative LT test.
 • Because this test relies on the reproduction of pain it may not be useful for those with complete LT tears.

Squat Test
 • The LT was found to for a “sling” in flexion-abduction –external rotation in a cadaver study
 • Ligament Teres
 • An atraumatic mechanism of injury was noted by 65% of subjects suggesting an overuse or degenerative mechanism with possible interrelationship between the abnormal osseous structures and complete LT tears.

Comprehensive Evaluation of Hip Instability
 • Examination: Special Tests
 • Craig's Test

Comprehensive Evaluation of Hip Instability
 • Strength – Plank Tests
 • Trunk
 • Hip

Functional Assessment
 • Single Leg Stance
 • Single Leg Squat
 • Medial Hop

Functional Assessment
 • Single Leg Stance
 • Single Leg Squat
 • Medial Hop

Single Leg Stance Test
 • Passing
 • No evidence of pain, pelvic drop, or trunk compensation
 • FAIL

Biomechanical Examination
 • Contributors to “miserable malignment”
 • Excessive pronation
 • Correct LE malpositioning
PHYSICAL THERAPY MANAGEMENT OF THE UNSTABLE HIP JOINT

PASSIVE + ACTIVE + NEURAL = STABILITY

ACUTE PHASE

PHASE I

• PROTECTIVEWEIGHTBEARING
• EARLYMOTION
• NOURISHES JOINT
• MECHONORECEPTOR STIMULATION
• FLEX TO 90
• MEDIAL ROTATION
• ABDUCTION TO 30
• CIRCUMDUCTION
• CPM
• BIKE RIDING

PROM SEQUENCE

SUPINE PROGRESSIONS

PHASE I

• NEUROMUSCULAR REEDUCTATION
• INITIATE NON-WEIGHTBEARING STRENGTHENING
• ISOMETRICS
• POSTURAL/POSITIONAL AWARENESS
 LUMBOPELVIC BIOFEEDBACK
 IMPORTANCE OF LUMBOPELVIC STABILIZATION

SUPINE HIP FLEXION

SUPINE MARCH PROGRESSION

• HEEL SLIDE
• SUPPORTED MARCH
• TOE TOUCH MARCH
• UNSUPPORTED ALTERNATING LEG

PRONE HIP EXTENSION PROGRESSION

• KNEE FLEXION
• HIP EXTENSION WITH KNEE BENT
• HIP EXTENSION WITH KNEE EXTENDED
• HIP MEDIAL ROTATION
• HIP ABDUCTION

PRONE MANUALLY RESISTED EXERCISES

• INTERNAL AND EXTERNAL ROTATION
• RHYTHMIC STABILIZATION

PHASE II: SUBACUTE

PHASE II

• NORMALIZATION OF MOVEMENT
• MOBILIZATIONS???
 • ANTERIOR MOBILIZATION IMPROVES GLUTEUS MAXIMUS MUSCLE ACTIVATION
 • INFERIOR AND LATERAL MOBILIZATION INCREASES ABDUCTION TORQUE
 (MAKOFSKY, 2008)
• PROGRESSIVE STRENGTHENING
 • DEEP ROTATORS
 • PRIME MOVERS
• ADVANCE LUMBOPELVIC STABILIZATION

QUADRUPED PROGRESSION
 • LEG EXTENSION
 • LEG EXTENSION IN PLANE OF ACETABULUM

CLOSED CHAIN HIP ROTATION
SIDELYING PROGRESSION
 • CLAM SHELLS
 • LONG LEG ABDUCTION WITH LATERAL ROTATION
 • LONG AXIS ROTATION IN ABDUCTION
 • RHYTHMIC STABILIZATION

CHOP/LIFT PROGRESSION

PARTIAL WEIGHTBEARING EXTERNAL ROTATION

LONG AXIS HIP ROTATION IN STANDING

LUNGE PROGRESSION

SQUAT PROGRESSION

ADVANCED PHASE III
 • DYNAMIC STRENGTHENING
 • ADVANCED STABILIZATION AND PROPRIOCEPTION
 • FUNCTIONAL MOVEMENT PATTERNS

 PLANK PROGRESSION
 KNEE CIRCLES
 MEDICINE BALL TOSS
 CLOSED CHAIN HIP ROTATION
 DYNAMIC NEUROMUSCULAR TRAINING
 ROTATIONAL BALL TOSS