Platforms

Do Recommended Return to Sports Criteria predict Successful Sports Participation in Young Athletes after ACL Reconstruction? (Laura C. Schmitt, Matthew Ithurburn)

Does Timing of Neuromuscular Training Affect Kinesiophobia, Knee Function, and Return to Sport Outcomes? (Celeste Dix, Lynn Snyder-Mackler)

The Impact of Quadriceps Strength Symmetry at Return-to-Sport on Longitudinal Function in Young Athletes after ACL Reconstruction (Alex Altenburger)

Psychological Factors are Related to Symmetry after ACL Reconstruction (Ryan Zarzycki)

Case Study

Soccer player attempting to return to sport after ACL Reconstruction

Point/Counterpoint: Rehabilitation after ACL Reconstruction

James J. Irrgang PT PhD ATC FAPTA
Professor and Vice Chair for Clinical Outcomes Research
Department of Orthopaedic Surgery
University of Pittsburgh School of Medicine
Physical Therapist, UPMC Center for Sports Medicine

George J. Davies, PT,DPT,MEd,SCS,ATC,LAT,CSCS,PES,FAPTA
Professor-Physical Therapy
Armstrong State University, Savannah, GA.
Professor Emeritus-UW-LaCrosse
LaCrosse, WI.
Sports Physical Therapist
Coastal Therapy, Savannah, GA.
And
Gundersen Health System Sports Medicine
LaCrosse, WI.
Associate Editor-Sports Health: A Multidisciplinary Approach
“Accelerated” Rehabilitation after ACL Reconstruction

James J. Irrgang PT PhD ATC FAPTA
Professor and Vice Chair for Clinical Outcomes Research
Department of Orthopaedic Surgery
University of Pittsburgh School of Medicine

and

Physical Therapist, UPMC Center for Sports Medicine

I. Immediate Post-Operative Rehabilitation Considerations
 A. Control pain & swelling
 B. Restore full passive knee extension symmetrical to non-involved knee
 C. Re-establish quadriceps control
 D. Restore patellar mobility
 E. Gradually improve knee flexion
 F. Restore normal ambulation

II. Weight Bearing Considerations
 A. Initial ambulation is WBAT with post-operative brace locked in full
 extension for 1st week
 B. Progress to WBAT with brace unlocked during 2nd post-operative week
 (exception is brace remains locked in full extension for 4 to 6 weeks
 following meniscus repair)
 C. Criteria for discontinuing use of crutches
 1. No/minimal pain & swelling (“quiet knee”)
 2. Full knee extension without extensor lag
 3. 90 to 100° knee flexion
 4. Able to ambulate with normal “heel-toe” gait without assistive devices

III. ROM Considerations
 A. Critical milestones for ROM
 1. Full passive and active extension symmetrical to non-involved knee
 within 1 week post-op
 2. 90 to 100 degrees of flexion within 2 weeks (flexion limited to 90° for 4
 to 6 weeks following meniscus repair)
 3. Full flexion by 8 weeks
 B. Initial ROM activities
 1. Passive knee extension (prone hangs)
 2. Hamstring/calf stretch
 3. Active-assisted & active knee flexion
IV. Quadriceps and Hamstring Exercises
 A. Initial quadriceps exercises include:
 1. Quad sets & straight leg raises
 2. Mini squats & wall slides
 3. Step-ups
 4. Open chain knee extension from 90 to 60° with cuff weights (begin once active flexion greater than 90 to 100°)
 B. Initial hamstring exercises (delayed for 4 – 6 weeks following autograft hamstring harvest)
 1. Isometric hamstring sets
 2. Prone & standing knee flexion – 0 to 90° with cuff weights
 C. Later stage quadriceps & hamstring exercises
 1. Open chain knee extension
 a. Limit to 90 – 60° for 6 weeks
 b. 90 – 45° after 6 weeks
 c. Full arc after 3 months
 2. Open chain knee flexion
 3. Close chain exercises – leg press, squats

V. Trunk & Hip Abductor & External Rotator Muscles

VI. Proprioception & Dynamic Stability
 A. Standing balance progression
 B. Anterior-posterior & medial-lateral roller board perturbations
 C. Tilt board perturbations

VII. Return to Sports
 A. Factors to Consider
 1. Time/graft healing
 a. Phases include:
 (1) synovial envelopment
 (2) revascularization, cellular proliferation & collagen formation
 (3) maturation and remodeling
 b. Time frame not well known in humans and likely highly variable between individuals
 2. MRI evidence of graft healing
 a. Signal intensity
 b. UTE T2* relaxation time
 3. Bone plug/soft tissue healing in bone tunnels likely longer than expected (Tashman & Harner 2014)
 B. Functional Progression
 1. Walking
 2. Running
3. Low-level agility drills
4. Jumping (2 legs)
5. Cutting, pivoting, hopping (1 leg)
6. Sprinting
7. Return to practice
8. Return to games/competition

C. Graft Considerations & Return to Sports - Generalizations

<table>
<thead>
<tr>
<th>Graft Type</th>
<th>Running</th>
<th>Low-Level Agility</th>
<th>Jumping</th>
<th>Cutting, Pivoting & Hopping</th>
<th>Return to Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autograft BPTB</td>
<td>4 months</td>
<td>5 months</td>
<td>7 months</td>
<td>8 months</td>
<td>9 months</td>
</tr>
<tr>
<td>Autograft Hamstring/Quad</td>
<td>5 months</td>
<td>6 months</td>
<td>8 months</td>
<td>9 months</td>
<td>10 months</td>
</tr>
<tr>
<td>Allograft BPTB</td>
<td>6 months</td>
<td>7 months</td>
<td>9 months</td>
<td>10 months</td>
<td>12 months</td>
</tr>
<tr>
<td>Soft Tissue Allograft</td>
<td>7 months</td>
<td>8 months</td>
<td>10 months</td>
<td>11 months</td>
<td>>12 months</td>
</tr>
</tbody>
</table>

D. Testing Criteria for Progression of Functional Training
1. Neuromuscular control
 a. Single leg squat/step up test
 b. Step & hold test
2. Quadriceps strength
 a. Isometric or isokinetic strength test
 b. Repetition maximum test
3. Functional testing & performance
 a. Hop tests
 b. Running/agility tests
 c. Successful performance of preliminary functional activities
4. Absence of symptoms
 a. Pain (soreness rules)
 b. Swelling (sweep test)
 c. Instability
E. Criterion Based Progression for Functional Training and Return to Sports

<table>
<thead>
<tr>
<th>Time Post-Op</th>
<th>Running</th>
<th>Low-Level Agility</th>
<th>Jumping</th>
<th>Cutting, Pivoting & Hopping</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6 months</td>
<td>10 times to 45°</td>
<td>10 times to 45° with 75% added weight</td>
<td>10 times to 60° with 85% added weight</td>
<td>10 times to 60° with 90% added weight</td>
</tr>
<tr>
<td>5 - 7 months</td>
<td>10 times to 45°</td>
<td>10 times to 45° with 75% added weight</td>
<td>10 times to 60° with 85% added weight</td>
<td>10 times to 60° with 90% added weight</td>
</tr>
<tr>
<td>7 - 9 months</td>
<td>10 times to 45°</td>
<td>10 times to 45° with 75% added weight</td>
<td>10 times to 60° with 85% added weight</td>
<td>10 times to 60° with 90% added weight</td>
</tr>
<tr>
<td>8 - 10 months</td>
<td>10 times to 45°</td>
<td>10 times to 45° with 75% added weight</td>
<td>10 times to 60° with 85% added weight</td>
<td>10 times to 60° with 90% added weight</td>
</tr>
</tbody>
</table>

Quadriceps Strength

<table>
<thead>
<tr>
<th>Quadriceps Strength</th>
<th>Time Post-Op</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 80%</td>
<td>4-6 months</td>
</tr>
<tr>
<td>≥ 85%</td>
<td>5 - 7 months</td>
</tr>
<tr>
<td>≥ 85%</td>
<td>7 - 9 months</td>
</tr>
<tr>
<td>≥ 90%</td>
<td>8 - 10 months</td>
</tr>
</tbody>
</table>

Functional Performance

<table>
<thead>
<tr>
<th>Functional Performance</th>
<th>Running</th>
<th>Jumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 minutes fast walking</td>
<td>Running 1-2 miles</td>
<td>No compensati on with full effort agility</td>
</tr>
</tbody>
</table>

References:

I. Introduction: Regardless of what we are doing with ACL Prevention and Rehabilitation, it’s not working very well!

II. Epidemiological incidence of ACL injuries seems to be increasing, rather than decreasing even with all the various ACL prevention programs (Medline search-12/1/15: 18,865)

III. Regardless of the myriad of ACL rehabilitation programs that are described, and everyone gets all their patients better, the literature does not support the great outcomes many try to describe (Medline search-12/1/15:2,893)

IV. Most patients that are discharged from physical therapy, still have significant residual deficits in their quadriceps which also translates into functional deficits as well (Medline search-12/1/15: 92)

V. Many patients discharged back to activity, have a re-injury of the same knee or the contralateral knee (Medline search-12/1/15: 18)

VI. Many patients that are returned back to sports cannot return back to their previous level of sports (Medline search-12/1/15: 652)

VII. Many patients, even after their best surgery and best rehabilitation, still have early onset osteoarthritic changes compared to the contralateral knee and a matched cohort (Medline search-12/1/15: 1,851)

VIII. So what do we need to do in the rehabilitation of patients following ACL injuries? (Medline search-12/1/15:845)

IX. Non-operative treatment for the “copers” (Medline search-12/1/15: 49)

X. Instead of accelerating the rehabilitation to get patients back to activity quicker (especially to beat the competitive clinic down the street of to keep up with the Jones’)(what some very high visibility clinics promote as their outcomes), perhaps we need to slow down the rehabilitation and discharge to let the subjective, objective, and functional tests, and the patient’s biology (Medline search-12/1/15:117)
XI. Perhaps we need to evaluate the patient’s biology more effectively before we discharge them and return them back to activity (Medline search-12/1/15:121)

XII. Perhaps we need to evaluate the rehabilitation programs to regain the power of the quadriceps. It is obvious that all the “hyped” closed kinetic chain and functional rehabilitation programs haven’t done the job! (Medline search-12/1/15:14/39/65/674)

XIII. Perhaps we need to go back to the basics: Is it time to go back to the open kinetic chain rehabilitation techniques to regain the isolated power of the quadriceps? (Medline search-12/1/15:53)

XIV. How about TLS establish 40 years ago? Today's buzzword is regional interdependency!

XV. What does the research demonstrate about using the integrated approach of OKC and CKC exercises in a rehabilitation program and the outcomes? (Medline search-12/1/15:17)

XVI. Rehabilitation Revolution: What should we be doing???? (Medline search-12/1/15:0)

XVII. References:

Knee References:

Epidemiology:
Sex Differences in Landing Biomechanics and Postural Stability During Adolescence: A Systematic Review with Meta-Analyses.
Holden S, Boreham C, Delahunt E.
Sports Med. 2015 Nov 5

Andernord D, Desai N, Björnsson H, Ylander M, Karlsson J, Samuelsson K.

Prevention:

Neuroscience Application to Noncontact Anterior Cruciate Ligament Injury Prevention.
Grooms DR, Onate JA.
Sports Health. 2015 Nov 25

Landing Technique and Performance in Youth Athletes After a Single Injury-Prevention Program Session.
Root H, Trojan T, Martinez J, Kraemer W, DiStefano LJ.
J Athl Train. 2015 Nov 2

Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial.
Br J Sports Med. 2015 Sep 23
Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS.

Rehabilitation:
Current Rehabilitation Concepts for Anterior Cruciate Ligament Surgery in Athletes.
Malempati C, Jurjans J, Noehren B, Ireland ML, Johnson DL.

Effects of 4 weeks preoperative exercise on knee extensor strength after anterior cruciate ligament reconstruction.
Kim do K, Hwang JH, Park WH.

Quad deficits:
Do exercises used in injury prevention programmes modify cutting task biomechanics? A systematic review with meta-analysis.
Pappas E, Nightingale EJ, Simic M, Ford KR, Hewett TE, Myer GD.

Return to play following ACL reconstruction: a systematic review about strength deficits.
Petersen W, Taheri P, Forkel P, Zantop T.

Strength and functional performance recovery after anterior cruciate ligament reconstruction in preadolescent athletes.
Greenberg EM, Greenberg ET, Ganley TJ, Lawrence JT.

Changes of muscle mechanics associated with anterior cruciate ligament deficiency and reconstruction.
Hsiao SF, Chou PH, Hsu HC, Lue YJ.

Pre-operative quadriceps strength predicts IKDC2000 scores 6 months after anterior cruciate ligament reconstruction.

Factors explaining chronic knee extensor strength deficits after ACL reconstruction.
Krishnan C, Williams GN.

The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction.
Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD.
Quadriceps activation following knee injuries: a systematic review.
Hart JM, Pietrosimone B, Hertel J, Ingersoll CD.
J Athl Train. 2010 Jan-Feb;45(1):87-97

Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction.

Quadriceps Strength, Muscle Activation Failure, and Patient-Reported Function at the Time of Return to Activity in Patients Following Anterior Cruciate Ligament Reconstruction: A Cross-Sectional Study.
Lepley LK, Palmieri-Smith RM.

ACL ReInjuries:
ReInjures, ReInjuries, and ReInjuries at a Minimum 2-Year Follow-up: A Randomized Clinical Trial Comparing 3 Graft Types for ACL Reconstruction.
Mohtadi N, Chan D, Barber R, Paolucci EO.
Clin J Sport Med. 2015 Jun 29

Anterior Cruciate Ligament Injury, Return to Play, and ReInjury in the Elite Collegiate Athlete: Analysis of an NCAA Division I Cohort.
Kamath GV, Murphy T, Creighton RA, Viradia N, Taft TN, Spang JT.

Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople.

Grooms DR, Page S, Onate JA.
J Athl Train. 2015 Sep 29

Return To Sports
Anterior cruciate ligament- specialized post-operative return-to-sports (ACL-SPORTS) training: a randomized control trial.

The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction.
Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV.
Deficits in Quadriceps Strength and Patient-Oriented Outcomes at Return to Activity After ACL Reconstruction: A Review of the Current Literature.
Lepley LK.
Sports Health. 2015 May;7(3):231-8

Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity.
Palmieri-Smith RM, Lepley LK.

Return to play following ACL reconstruction: a systematic review about strength deficits.
Petersen W, Taeeri P, Forkel P, Zantop T.

The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction.
Schmitt LC, Paterno MV, Hewett TE.

Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC.

Kinesiophobia and Return to Sports After Anterior Cruciate Ligament Reconstruction.
Medvecky MJ, Nelson S.

Functional Testing Differences in Anterior Cruciate Ligament Reconstruction Patients Released Versus Not Released to Return to Sport.
Mayer SW, Queen RM, Taylor D, Moorman CT 3rd, Toth AP, Garrett WE Jr, Butler RJ.

Sports participation 2 years after anterior cruciate ligament reconstruction in athletes who had not returned to sport at 1 year: a prospective follow-up of physical function and psychological factors in 122 athletes.
Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE.

Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review.
Barber-Westin SD, Noyes FR.

Comparison of knee flexion isokinetic deficits between seated and prone positions after ACL reconstruction with hamstrings graft: Implications for rehabilitation and return to sports decisions.

ACL and Osteoarthritis:
Quadiceps muscle activation and radiographic osteoarthritis following ACL revision.
Hart JM, Turman KA, Diduch DR, Hart JA, Miller MD.

Accelerated return to sport after anterior cruciate ligament injury: a risk factor for early kneeosteoarthritis?
Culvenor AG, Crossley KM.
Br J Sports Med. 2015 Nov 25

Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury.
Wellsandt E, Gardinier ES, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L.

ACL Deficient COPERS:
Identifying individuals with an anterior cruciate ligament-deficient knee as copers and noncopers: a narrative literature review.
Kaplan Y.

Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokineticquadriceps strength profiles in the early stage after injury.
Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA.

ACCELERATED REHABILITATION:
Accelerated return to sport after anterior cruciate ligament injury: a risk factor for early knee osteoarthritis?
Culvenor AG, Crossley KM.

Effects of acceleration training 24 weeks after anterior cruciate ligament reconstruction on proprioceptive and dynamic balancing functions.
An KO, Park GD, Lee JC.
J Phys Ther Sci. 2015 Sep;27(9):2825-8

ACL-BIOLOGY AND SOFT TISSUE HEALING
Effect of immediate and delayed high-strain loading on tendon-to-bone healing after anterior cruciate ligament reconstruction.
Packer JD, Bedi A, Fox AJ, Gasinu S, Imhauser CW, Stasiak M, Deng XH, Rodeo SA.

Bony incorporation of soft tissue anterior cruciate ligament grafts in an animal model: autograft versus allograft with low-dose gamma irradiation.

FUNCTIONAL REHABILITATION:
Grooms DR, Page SJ, Onate JA.

Ordahan B, Küçükşen S, Tuncay İ, Salli A, Uğurlu H.

The effects of rehabilitation protocol on functional recovery after anterior cruciate ligament reconstruction.
Dragicevic-Cvjetkovic D, Jandric S, Bijeljac S, Palija S, Manojlovic S, Talic G.

ISOLATED EXERCISES FOR QUADRICEPS POWER:
Isokinetic dynamometer evaluation of the effects of early thigh diameter difference on thigh muscle strength in patients undergoing anterior cruciate ligament reconstruction with hamstring tendon graft.
Kılınç BE, Kara A, Camur S, Oc Y, Celik H.

Changes in quadriceps and hamstring cocontraction following landing instruction in patients with anterior cruciate ligament reconstruction.
Elias AR, Hammill CD, Mizner RL.

Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction.
Roewer BD, Di Stasi SL, Snyder-Mackler L.

TOTAL LEG STRENGTH:
An evidence-based review of hip-focused neuromuscular exercise interventions to address dynamic lower extremity valgus.
Ford KR, Nguyen AD, Dischiavi SL, Hegedus EJ, Zuk EF, Taylor JB.

A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength.
Palmer K, Hebron C, Williams JM.
BMC Musculoskeletal Disord. 2015 May 3;16:105.
Hip flexion strength remains decreased in anterior cruciate ligament reconstructed patients at one-year follow up compared to healthy controls.

Functional Testing Differences in Anterior Cruciate Ligament Reconstruction Patients Released Versus Not Released to Return to Sport.

INTEGRATED REHABILITATION:
Neuromuscular efficiency of the vastus lateralis and biceps femoris muscles in individuals with anterior cruciate ligament injuries.

Comparative adaptations of lower limb biomechanics during unilateral and bilateral landings after different neuromuscular-based ACL injury prevention protocols.

Design and implementation of a neuromuscular training program following anterior cruciate ligament reconstruction.