The Athletic Shoulder Through The Lifespan – The Pediatric Years

Andrew Naylor PT, DPT, SCS

- Disclosures
- Objectives
 - Upon completion of this lecture, the attendee will:
 - Review common shoulder pathologies in the pediatric age group
 - Identify unique evaluation techniques to the youth athlete
 - Review clinical rehabilitation techniques based on the unique needs of the pediatric age group
 - Describe current decision making guidelines and outcomes for return to play
- Current State of Youth Athletics
 Statistics
 - High school athletes account for an estimated 2 million injuries, 500,000 doctor visits, and 30,000 hospitalizations each year.
 - More than 3.5 million kids under age 14 receive medical treatment for sports injuries each year.
 - Overuse injuries are responsible for nearly half of all sports injuries to middle and high school students
- Statistics
 - By age 13, 70% of kids drop out of youth sports.
 - The top three reasons:
 - Adults
 - Coaches
 - Parents
- Injury Rates in Throwers
 - 20% of children ages 8 to 12 and 45% of those ages 13 to 14 will have arm pain during a single youth baseball season.
 - 5 fold increase in the number of serious shoulder and elbow injuries among youth baseball and softball players since 2000.
- Common Pediatric Injuries
 - Clavicle Fractures
 - Can be medial as well
Little Leaguer’s Shoulder

- Biceps and SLAP Injuries
 - Associated with GIRD
- Instability
- Scapular Dyskinesis
 - Associated with other injuries
- Proximal Humerus Fractures

- A greater proportion of older children are treated for overuse injuries
 - Younger children more commonly diagnosed with fractures
 - Physeal
 - Apophysitis
 - OCD lesions

Case Study

- **History**
 - 9 y.o. RH dominant pitcher
 - Bigger body type
- **Hx of right shoulder pain x 6 weeks**
 - Threw ~100 pitches in 3 innings
 - Had “a really bad inning”
 - 2 days later tried to pitch again
 - Warmed up through soreness
 - Felt pain on second pitch
 - Has rested since

- **Case Study Examination**
 - **Palpation**
 - Tenderness at greater tuberosity, infraspinatus
 - **ROM:**
 - Right 90/90 ER/IR 130/50
 - Left 90/90 ER/IR 110/80
 - **MMT**
 - flexion 4/5, scaption 4/5, abduction 4+/5, IR 5/5, ER 5/5
 - rhomboid 4/5, middle trapezius 4/5, lower trapezius 4/5.
 - **Special Tests**
 - Limited posterior mobility, good inferior mobility

- **Subjective**
 - **Common Questions**
 - **Location of pain**
 - **When did it start**
 - **Aggravating factors**
 - **Improving factors**
 - **Changes in volume**
 - **Recent Growth spurt?**

- **Examination**
 - **Observation**
 - **Scapular positioning**
Repetitive motion
Dynamic strength testing
Scapular Assessment
Strength
Mobility
Range of motion
 - GIRD
 - Total Arc

Strength Assessment
Balance and Coordination

Treatment
 - Rest
 - Control Inflammation
 - Modify Usage
 - Treatment
 - Medicine
 - +/- Surgery
 - Rehab
 - Return to play

Restore ROM
Strengthen/Activate
Rotator Cuff
Scapular Stabilizers
Core/Legs
Functional Movements
Interval Throwing Program

Little Leaguer’s Shoulder
 - Mainly occurs 11-13 years of age
 - Microtrauma leading to stress fracture at the proximal humeral physis
 - Physes has difficulty transmitting stress
 - Bony stress reactions require time to heal
 - Avg 3-8 months

Instability
 - Traumatic or Atraumatic
 - Recurrence is common
 - Atraumatic may be multidirectional
 - Throwers (anterior)
 - Swimmers
 - Gymnasts

Biceps/SLAP
 - Most commonly seen in elite throwers
 - MOI
 - Peel back mechanism
- GIRD
- Coexists with other pathologies
- Recognize the role of scapular mechanics and stabilization

Rehabilitation Implications
- Implementing movement patterns that differ from the sport
- Integrative Neuromuscular training must be part of the annual program for children
- Gear towards preparatory conditioning and fun-based activities
- Enhancing movement profiles
 - Adding new patterns that are undercoached
- Accounting for growth spurts during training
- Monitor workloads in and out of season

Balance and Coordination
- Anti-rotation and core activities
- Mechanics
 - Landing
 - Jumping
- Unilateral and Bilateral LE situations
- Acceleration, Deceleration, and Reacceleration

Role of Growth

Humeral Retrotorsion
- Rotational difference between the position of the humeral head and the axis of the elbow
- Healthy adult population, dom arm 3 degrees
- Throwers = Inc GER, Dec GIR
- Bony and soft tissue adaptations
- Hibberd et al accounted for HR and GIR asymmetry remained unchanged across age groups
- Suggests Retrotorsion plays a role

Age Related Changes of HR

Development of Retroversion
- Does throwing activity affect retrotorsion development?
 - Yes
- Does the effect of HR on shoulder ROM vary with Age?
 - Probably
- Does a “Window of Opportunity Exist” for its development?
 - Unsure
- Is HR protective against injury?
 - More research needed

Activity Modification
- ASMI Guidelines
- Pitch Counts
- PEP Program for Throwers?

Practice/Throwing Modifications
- Cardiovascular Warm up
• Shoulder mobility exercises
• Practice/Throw
• Cuff Exercises
• Stretching
• Ice

• Risk Prone Activities
 • 13.2% reported pitching competitively > 8 mos/year
 • 5.7% year round
 • 45% pitch in leagues without limits or counts
 • 43.5% pitched at least once on consecutive days
 • 30.4% pitched on teams with overlapping seasons
 • 19% pitched more than one game in a day

• Outcomes
• Return to Sport Testing
• Psychosocial Aspects
• Long Term Development
 • Later Specialization:
 • Elite performance
 • Enhanced physical health
 • Enhanced enjoyment of the sport
 • Children participating in > 16 hrs/wk of sports activity need monitoring

References

• References
• Al Dajah SB. Soft tissue mobilization and PNF improve range of motion and minimize pain levels in shoulder impingement. J Phys Ther Sci. 2014; 26:1803-1805
The Athletic Shoulder Across the Lifespan - Collegiate Athletes
Wes Eberlin, PT, MPT, SCS, CSCS

- DISCLOSURE
 - Nothing to disclose

- OBJECTIVES
 - Identify and review shoulder pathologies common to the collegiate/young adult athlete
 - Present mechanisms and factors involved in injury
 - Outline rehabilitation specifics for various pathologies
 - Examine upper extremity functional testing and return to sport programs
 - Discuss special considerations when working with the collegiate/young athlete

- Shoulder Injuries – Contact Sports
 - Football – Kaplan et al 2005
 - Hockey – Agel et al 2007
 - Rugby – Heady et al 2007

- Shoulder Injuries – Overhead Sports
 - Laudner & Sipes 2009

- Conditions
 - AC Separation
 - Shoulder Dislocation
 - Rotator Cuff Impingement
 - SLAP

- AC Separation
 - 9% of shoulder girdle injuries
 - Men > women (5:1)

 - Mechanism
 - Direct – fall or blow onto lateral aspect of shoulder with arm adducted
 - Indirect (less common) – fall on outstretched hand

- AC Separation
 - Grade I
 - No visible deformity
 - AC ligament sprained but intact
 - Distal clavicle stable
 - AC Separation

 - Grade II
 - Slight upward displacement of clavicle
 - AC ligament torn
 - CC ligament sprained but intact
 - Distal clavicle unstable in horizontal plane
- AC Separation

 - Grade III
 - Distal clavicle displaced superiorly
 - AC ligament torn
 - CC ligament torn
 - Distal clavicle unstable in horizontal and vertical planes

 - AC Separation
 - Grade IV
 - Posterior dislocation of distal clavicle
 - Grade V
 - Distal clavicle stripped of soft tissue attachments (deltotrapezial fascia)
 - More severe type III
 - Grade VI
 - Inferior dislocation of distal clavicle

- AC Separation Treatment
 - Grade I & II
 - Non-surgical
 - Sling, rest, NSAIDs, rehab, gradually resume activities
 - Injection for athletes?
 - AC Separation Treatment

- Grade IV, V, VI
 - Surgical
 - Reduce and stabilize joint, reconstruct ligaments
 - AC Separation Treatment

- Grade III
 - Debate
 - Goals? Occupation? Expectations?
 - Non-surgical – Adequate for most
 - Surgical – primarily for OH athletes and military
 - Overall satisfaction, time to return to activity, pain, ROM, and strength found to be similar

- AC Separation

- Rehab considerations

- Shoulder Dislocations
 - Shoulder most commonly dislocated joint
 - 45% of all dislocations

- Anterior Dislocation
 - 96-98% of shoulder dislocations
 - Incidence 11.2/100,000 population/year
 - Mechanism of Injury = abduction + external rotation
• Anterior Dislocation
 • Bankart tear
 • Hill Sachs lesion

• Anterior Dislocation
 • Men affected 3x more often than women
 • 9/10 are 21-30 years of age
 • Recurrence rate
 o Studies have shown up to 95% recurrence
 o Age related factors
 ▪ 1st time dislocator <20 y/o
 • 77% recurrence of instability within first year
 • Only 32% have stable shoulder 10 years later
 ▪ >40 y/o almost always tear cuff
 • Contact sports ➔ high risk of recurrence
 • Nerve injury frequent
 o De Laat et all found EMG evidence in 45% of cases

• Non-Op Treatment – Anterior Dislocation
• Immobilization
 o IR vs ER?
 ▪ IR
 • Conventional = sling x 3-6 weeks followed by rehab
 • Recurrence rate up to 95%
 ▪ ER
 • Itoi et al - MRI studies show ER increases tension on subscapularis and maintains the labrum and capsule in close contact with glenoid
 • Recurrence rate increases with time, becomes similar to conventional treatment
 • Adherence fair, position poorly tolerated
 • To date, there is no scientific proof that a specific immobilization position or duration is better over the others
 o Need for further studies

• Operative Treatment – Anterior Dislocation
• Handoll et al & Brophy et al –
 o Surgical stabilization is warranted for “young adults, usually male, engaged in highly demanding physical activities who have sustained their first acute traumatic shoulder dislocation”
 • Recurrence rates significantly lower after surgical stabilization
 o 68%-80% reduction in relative risk for recurrent instability
 • Bankart repair and/or capsular shift
 • Early repair of labrum and capsule improves healing
• Arthroscopy vs Open
 o Suture anchors
 o Treatment – Anterior Dislocation
- Depends on timing of injury, needs of athlete
- Sully brace to finish season

- Anterior Dislocation
- Rehab considerations

- Subacromial Impingement
 - Compression between the coraco-acromial arch and humerus
 - Supraspinatus, subacromial bursa, long biceps tendon
 - Occurs during active elevation of the arm

- Subacromial Impingement
- Structural Factors
- Functional Factors

- Clinical Presentation
 - Pain in anterior or lateral shoulder
 - Painful with active elevation of the arm
 - Activities performed below shoulder height are okay

- Internal Impingement
 - Compression between the posterosuperior labrum and greater tuberosity
 - Supraspinatus and infraspinatus
 - Occurs in overhead athletes when arm is abducted and externally rotated
 - Internal Impingement

 - Factors
 - Acquired anterior instability???
 - Humeral retroversion
 - Loss of internal rotation
 - Posture – SICK Scapula

- Clinical Presentation
 - Chronic, diffuse, posterior shoulder pain
 - Exacerbated by activities requiring abduction and external rotation
 - Performance (throwers)
 - Decreased velocity
 - Decreased control
 - “Dead arm”

- SLAP LESIONS
 - Superior Labrum from Anterior to Posterior
 - Andrews et al 1985
 - First to report on superior labral lesions in throwers
 - Snyder et al 1990
 - Coined term ‘SLAP’
- Reported 6% incidence in 2000 cases
- Presented classification system

- **CLASSIFICATION**
 - 4 types in Snyder’s Classification system
 - Has been expanded by later investigators
 - Classification beyond original 4 types has not been proven to influence understanding and treatment of

- **SLAP injuries**
 - **TYPE I**
 - Superior labral fraying with localized degeneration
 - Superior labral and biceps anchor attachments remain intact
 - Common in middle-aged persons
 - 11% of superior labral injuries (Snyder 1990)

 - **TYPE II**
 - Detachment of the superior labrum/biceps anchor from the glenoid
 - Most common clinically significant tears
 - 41% of superior labral injuries (Snyder 1990)

 - **TYPE III**
 - Bucket handle tear of the superior labrum with an intact biceps anchor
 - May displace into joint causing mechanical symptoms

 - **TYPE IV**
 - Bucket handle tear of the superior labrum with extension of the labral tear into the biceps tendon

- **MECHANISM OF INJURY**
 - Traction
 - Sudden anterior or inferior pull
 - Fall on outstretched hand (FOOSH)
 - Overuse – Overhead Athletes

- **SUBJECTIVE COMPLAINTS**
 - Pain
 - May be sharp or aching
 - Deep within shoulder
 - Posterior in throwers
 - During late cocking or early acceleration
 - Intermittent clicking or mechanical symptoms
 - Weakness
 - Performance (throwers)
 - Decreased velocity
 - Decreased control
 - “Dead arm”
• MECHANISM OF INJURY - THROWING
 • Biomechanical cascade
 o ↑’d ER
 ▪ Lengthening of anterior capsuloligamentous restraints
 ▪ Increased humeral retroversion
 o ↓’d IR
 ▪ Posterior capsule contracture (PIGHL)
 ▪ “Essential lesion”
 • Burkhart and Morgan 1998
 ▪ POSTERIOR CAPSULE CONTRACTURE

• HUMERAL SHIFT
• Cadaver Study (Grossman 2005)
 o Normal shoulder
 ▪ Humeral head shifts posterior/inferior in late cocking
 o Simulated posterior capsule contracture and anterior capsule stretch injury
 ▪ Humeral head shifts posterior/superior in maximal ER
 ▪ Loads the labrum while under excess tension with increased ER
 ▪ Labrum peels back and separates from glenoid rim attritionally

• PEEL BACK
• When shoulder is placed in a position of abduction and maximal external rotation, the rotation produces a twist at the base of the biceps, transmitting torsional force to the anchor
• Burkhart and Morgan 1998

• EXAMINATION
• ROM
 o GIRD
 o Kinetic chain mobility
 • Posture
 o SICK scapula
 • Strength/Motor Control
 o Dyskinesia
 o ER/IR
 o Core
 • Special Tests

• GIRD
• Glenohumeral
• Internal
• Rotation
• Deficit
• Loss of Internal Rotation compared to non-throwing shoulder
- GIRD
- Adaption in throwers
- Humeral retroversion
- Shoulder at risk = GIRD > 20 degrees
 - Of 39 pitchers presenting with GIRD in spring training 60% had injuries over the course of the season
 - Burkhart, Morgan, and Kibler 2003

- TOTAL ARC OF MOTION CONCEPT
- ER + IR = Total Motion
- Total rotational motion is equal bilaterally (within 5 degrees)
- Pitchers with GIRD 2x as likely to be injured as those without
- Pitchers with total rotational motion deficit greater than 5 degrees had a higher rate of injury

- SICK Scapula
- Scapular malposition
- Inferior medial border prominence
- Coracoid pain and malposition
- dysKinesis of scapular movement
- SCAPULAR DYKINESIA

- Rehab
 - Acute Phase
 - Decrease pain and inflammation
 - Normalize ROM
 - Re-establish dynamic stability and muscular balance
 - Improve posture
 - Avoid aggravating activities

- Rehab
 - Intermediate Phase
 - Normalize arthrokinematics of shoulder complex
 - Normalize strength
 - Enhance dynamic stability
 - Increase activities

- Rehab
 - Advanced Phase
 - Aggressive strengthening
 - Progress neuromuscular control
 - Improve strength, power, and endurance
 - Maintain flexibility, ROM, postural correction

- Rehab
 - Return to Sport Phase
 - Initiate interval sport program
- Maintenance exercise program
- Return to competition

- Return to Sports Criteria
- Pain free
- Full ROM
- Appropriate rehab progression
- Adequate strength and dynamic stability
 - Isokinetic testing
 - ER peak torque/body weight of 18-23%
 - ER/IR ratio of 66-76%
 - ER/abduction ratio 67-75% at 180°/sec

- Return to Sports
- Functional Testing
 - Y-balance
 - CKCUEST
 - Single Arm Shot Put Test
 - Push Up Test
 - Modified Pull-up Test
 - Return to Sports

- Interval sports programs
 - Throwing
 - Swimming
 - Tennis

- Special Considerations
 - People involved during the rehab process
 - Admin/front office
 - Coaches
 - Physical Therapist
 - Athletic Trainers
 - Strength and Conditioning Coaches
 - Special Considerations

- Sports psychology
 - Athlete expectations/fears
 - Expectations on athlete
 - Athlete identity
 - Motivation
 - Support System

References

The Athletic Shoulder Across the Lifespan: The Master’s Athlete

Mitch Salsbery, PT, SCS
Coordinator, Upper Extremity PT Fellowship
The Ohio State University Wexner Medical Center

- Objectives
 - Discuss examination specific to the master’s athlete’s shoulder
 - Review physiological changes of aging
 - Identify and discuss common shoulder pathologies in master’s athletes
 - Explore rehabilitation considerations specifically for the masters level athlete
 - Identify current literature in regards to return to sport

- Case Study
 - Previous Injuries
 - Current Complaints
 - Case as a Master’s Athlete

- Examination
 - 1987: 2500 participants Senior Games
 - 2011: 10,100 participants
 - Shoulder most mobile joint in body
 - Necessary for athletic events
 - Problem: Shoulder motion declines with age and with long-term sports participation (Kibler. Shoulder ROM in elite tennis. AJSM 1996)
 - Shoulder requires muscular balance to optimize strength and function
 - Aging leads to increased RTC tear rate (Templehof. JSES 1999)
 - Osteoarthritis
 - Gradual
 - Worst with activity and/or at night
 - Crepitus
 - Decreased ROM (rotation then flexion)
 - Decreased weight bearing
 - Strength may decrease
 - Special Testing Benefit?
 - Tissue Quality
 - Decrease in lean body mass
 - Decrease anabolics
 - Increase in catabolics
 - Decrease in Type I and II muscle fibers
 - Primarily Type II
 - Normal or Disuse atrophy???
- Rotator Cuff
 - Chronic vs acute
 - 44% Type I slow twitch in older adults (Lovering, JOSPT 2008)
 - Type II likely injured in eccentric actions
 - Strengthen Type II with rehab
- Muscle fiber types do NOT change when training is similar (coggan, J Apply Phys 1992)

- Mature Pathologies
 - Rotator Cuff
 - Etiology
 - Intrinsic
 - Decreased tensile strength of tendons
 - Intrinsic tendon degeneration
 - Presents as articularsided injury
 - Extrinsic
 - Compression against adjacent structures
 - NSAIDS may slow healing of chronic tendinopathies (mehallo CJS 2006)
 - 141 Senior Olympiads
 - Msk US of dominant shoulder Supraspinatus
 - 30% Pain with Positive Findings
- Pain
 - Positive predictor of RTC injury, worse function
 - Pain, DASH, ASES
- Aysymptomatic Tear: decrease in patient-based shoulder function measures and ROM
- Partial Thickness Tears Normal?
 - 80% turn into full thickness over 2 years (matsumoto 1994)
- Surgical outcomes:
 - Weber: good or excellent in 31of 33 partical thickness repairs
 - Hannafin: 98% patient satisfaction in 41 patinet with full repair or partial repair
 - Malearny: 12% retear rate when tear completed and repair
- Recreational pitchers:
 - 59 yr avg
 - 100% returned to sport
 - 92% of original function
- Tennis
 - 42 of 51 returned to sport
 - Avg of 9.8 months
 - Osteoarthritis
- Most common bone & joint disease
- Male > Female
- Degeneration most common cause – not associated with athletic activity
- Increases with PMH:
 - Rotator Cuff Arthropathy
 - Instability
 - Postsurgical
 - Fracture
 - Glenoid Retroversion (posterior wear pattern)

 - **Total Shoulder Arthroplasty**
 - 75% return to previous sports of golf, tennis, swimming
 - Spend TWICE as much time as before surgery
 - However, less than 50% of those playing softball, bowling, weight lifting returned
 - McCarty AJSM 2008. Sports Participation after TSA
 - Golf: 96% returned to recreational golf
 - Improved performance of 5 strokes
 - Younger TSA:
 - Under 50 years old
 - Less than 50% had unsatisfactory result (Sperling, JSES 2004
 - 62.5% survival rate at 10 years (denard JESE 2013)

- **Rehab Considerations**
 - What we CAN effect
 - Kinetic Chain mobility
 - Strength preservation
 - Posture
 - Biomechanics
 - Motivation
 - Knowledge
 - Overall health
 - What we CAN’T effect
 - Rotator cuff healing
 - Arthritis
 - Cartilage degeneration

 - More rapid deconditioning than younger
 - (Galloway, Aging successfully: the importance of physical activity in maintaining health and function. J AM Acad Orthop Surg. 2008
 - Maximize ROM
 - Loss of ROM leads to compression
 - Increases in OA and/or symptoms
- Posture
 - Daily
 - Sport Specific
- Mobility
 - Thoracic Cage and Spine
 - Cervical Spine
 - Scapula
 - Posterior Shoulder
 - GH Joint
 - Soft tissue
- Strength
 - Core
 - RTC
 - Periscapular
 - Postural Control
- Stability
- Power
- Return to Sport

References – Masters Athlete

The Athletic Shoulder Across the Lifespan: End-Stage Rehab and Performance Enhancement
Daniel Lorenz, DPT, PT, ATC/L, CSCS
Director of Clinical Operations, Specialists in Sports and Orthopedic Rehabilitation (SSOR)

- Thinking beyond the rotator cuff and scapula
 - Thoracic spine mobility
 - LE strength/balance
 - What performance characteristics determine elite baseball performance?
 - Core stability and the overhead athlete
 - “Try shooting a cannon from a canoe if you don’t think core stability is important” – Rob Panariello

- Components of a Needs Analysis
- Training for Strength, Power, Speed
 - Strength – key component is deceleration/eccentric strength
 - Eccentric/decel strength
 - Starting strength
 - Elastic/reactive Strength
 - Power or explosive strength
 - Speed
- Pediatric Programming
 - Biological v. Training Age
 - Critical components of a comprehensive pediatric program
- Collegiate Considerations/Programming
- Masters Athlete Considerations/Programming

REFERENCES