ABSTRACT

Background: Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation.

Hypothesis/purpose: To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests.

Study Design: Systematic review

Methods: A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks.

Results: Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (> 80%) but not specificity values (> 50%). Drop-jump task agreement ranged from poor (< 50%) to excellent (> 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 19° (peak knee flexion) were found in the results of those assessing running and side-step cutting manoeuvres. Variables such as the speed of movement, the methods of rating, the profiles of participants and the experience levels of observers may have influenced the outcomes of functional testing.

Limitations: The small number of studies used limits generalizability. Furthermore, this review used two dimensional videoplayback for the majority of observations. If the movements had been rated in real-time three dimensional video, the results may have been different.

Conclusions: Slower, speed controlled movements using dichotomous ratings reach target sensitivity and demonstrate higher overall levels of agreement. As a result, their utilization in functional screening is advocated.

Level of Evidence: 1A

Keywords: 3D motion analysis; functional screening; lower extremity; observation.
BACKGROUND
Optimal performance and avoidance of injury, both in sports and in everyday life, may depend on the quality of lower extremity movement. While anatomical variance is widely accepted, certain dynamic lower extremity movement patterns have been categorized as potential precursors to non-contact lower limb injury. Excessive hip internal rotation has been linked to patellofemoral pain, non-contact anterior cruciate ligament trauma and illiotibial band syndrome. Therefore, the assessment of functional tasks including squats, single-leg squats and drop-jumps have been used to evaluate an individual's injury risk and to direct the content of training programs.

Multi-camera, three dimenional (3D) motion analysis has been found to have excellent reliability in assessing lower extremity kinematic variables and is recognized as the gold standard in kinematic assessment. Although highly sophisticated, the cost, resource requirement and lengthy data collection times make the use of 3D motion analysis relatively uncommon. Alternatively, clinicians commonly use visual or video observation to rate functional movements and evaluate the quality of lower extremity kinematics. During this form of functional assessment, observers recognize that proximal pelvic position impacts knee loading and control while, distally, the foot can be used as a reference marker to define knee position.

Therapeutic interventions and training programs are strongly influenced by the results of movement analysis. Therefore, it is important that clinicians, who do not have access to 3D technology, have alternative methods of rating movement. The cost-effective nature makes observation the logical alternative choice in lower limb functional evaluation. However, when conducting functional assessments, assessors must be confident that the tasks under scrutiny are sensitive enough to rule out those at low risk of injury and specific enough to ensure that high risk individuals do not pass unnoticed. While sensitivity and specificity values highlight diagnostic power, functional assessment of tasks can only be valuable if validity is established. Being a necessary condition of validity, the value of functional screening begins by establishing reliability.

Several authors have investigated the levels of agreement within and between observers assessing lower limb kinematics. Experienced physiotherapists observing four lower extremity functional tasks (two-legged squat, single-leg small knee bend, lunge, and hop lunge) have demonstrated high levels of intra-rater agreement and fair-to-good inter-rater agreement. Similarly, Poulsen and James found that novice clinicians assessing a single-leg squat were able to track Knee Frontal Plane Projection angle (FPPA), a measure of knee alignment used to denote valgus projection. Inter-rater and intra-rater agreement also exists between clinicians evaluating unilateral squats and lateral step-down tasks, however, these levels of agreement were low. The aforementioned results testify to observer reliability. However, only a few studies have investigated the validity of human observation using 3D motion analysis as a reference standard and, to the best of the authors' knowledge, no systematic review of this comparative literature has been conducted.

Therefore, the purpose of this systematic review is to evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests.

METHODS
Data sources and search strategy
A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Key search terms were gait or walk* or "biomechanical analysis" or "functional analysis" or "motion analysis" or "3D motion analysis" or "motion analysis" or "kinematic analysis" or "3D motion analysis" or "2D motion analysis" or "video analysis" or observation and "lower extremity" or "lower limb" or leg. Key words from returned studies, if not already included, were incorporated into the search strategy. (Table 1). Furthermore, the reference lists and ‘cited by’ applications within databases were perused in an attempt to achieve an all-encompassing research yield.

Study selection
Study selection was defined by pre-determined inclusion and exclusion criteria. Eligible studies...
were those comparing human observation of real-time video play-back to 3D motion analysis of functional tasks. It was pre-determined that only lower extremity functional assessment would be appropriate and that the study samples had to comprise uninjured, healthy subjects. Eligible observers were certified health practitioners that incorporate observation in their assessments or qualified members of sports and athletic training teams that conduct athlete screening.

A stratified eligibility assessment was conducted. Initially, study titles were reviewed and titles not matching the inclusion criteria were excluded. Next, the abstracts of selected studies were read, with inappropriate studies being excluded. Finally, full manuscripts of the chosen articles were reviewed. At this stage, studies were excluded if they did not list the health/injury status of the subjects, the vocation of the observers or if it was not categorically stated that human observation and 3D motion analysis were the index test and reference standard respectively. Figure 1 displays the study selection procedure.

Risk of bias evaluation

To evaluate the quality of the inclusive research, the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used. The QUADAS-2 was developed through the School of Social and Community Medicine at the University of Bristol, England. The tool has been used extensively in systematic reviews aimed at the validity of diagnostic tests. The QUADAS-2 consists of four key domains; patient selection, index test, reference standard, and flow and timing. All four domains utilize a series of signalling questions that assist in determining the risk of bias within the study design. The first three domains also address the study’s applicability to the review. In all domains, each signalling question can be answered “yes”, “no” or “unclear” and are phrased in such a manner that “yes” indicates a low risk of bias. The creators of the QUADAS-2 indicate that if all questions within a domain are answered “yes”, then the risk of bias is low. But if a signalling question is answered “no”, then the potential for bias exist.

Data extraction

The information extracted from the selected papers consisted of participant anthropometrics (sex, age and activity level), characteristics of observers (background, level of experience and amount of training with functional tool protocol), and details of interventions (the number and description of functional screening tools). The heterogeneity of populations, tests and outcomes used precluded a meta-analysis (Table 2). In terms of functional assessment, sensitivity and specificity, respectively, highlight the ability of a task’s rating to identify movement char-

Table 1. Key search terms

<table>
<thead>
<tr>
<th>Search strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>gait OR walk* OR "biomechanical analysis" OR "functional analysis" OR "movement analysis" OR "motion analysis" OR "kinematic analysis" OR "3D motion analysis" OR "2D motion analysis" OR "video analysis" OR observation AND "lower extremity" OR "lower limb" OR leg</td>
</tr>
</tbody>
</table>

Figure 1. Figure 1 – Search strategy.
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Subjects</th>
<th>Raters</th>
<th>Method/Tests</th>
<th>Outcome Variables</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ageberg et al - 2010</td>
<td>To validate the observation of a single leg mini squat for assessing the position of the knee in relation to the ankle joint.</td>
<td>25 subjects (17 women) aged between 18-37. Recruited from the local community.</td>
<td>2 musculoskeletal physiotherapists with no previous experience of the test scored knee-to-foot position. Before the study both were trained for the test by an experienced examiner. A 3D examiner, blinded to the observation results collected the 3D data.</td>
<td>Single-leg mini squat. Participants were recorded using a bar for balance and looking down while bending their knee, without bending forward from the hip, until they could no longer see their toes. This mini squat was repeated 5 times at a defined speed. Opposite leg was held in slight hip flexion and approximately 80° knee flexion. Test outcome variables: knee-over-foott or knee-medial-to-foott. 2-D peak tibial, peak thigh, and peak knee varus/valgus angles (degrees), and 3-D peak hip internal rotation, and peak knee varus valgus angles (degrees) were calculated and used for validation of the clinical test. 3D data was collected simultaneously.</td>
<td>Independent t-tests to compare 2D and 3D data. A level of p ≤ 0.05 was chosen to indicate statistical significance. The receiver operating characteristic (ROC) curve to determine the test’s ability to discriminate between those with and without 2D medial knee positioning. An area under the ROC curve close to 0.5 indicates a poor test, and a value close to 1.0 indicates a good test. 3D subjects were scored knee-mediotal-to-foot by observation. These 10 demonstrated higher tibia (p<0.001) and thigh angles (p<0.001) in 2D demonstrating more knee valgus (p<0.001). In 3D, the knee internal rotation angle was also larger (p=0.049) but varus/varus angle was not (p=0.583). Area under the ROC curve was 0.867 denoting a good test (SE 0.082, p=0.002).</td>
<td></td>
</tr>
<tr>
<td>Ekegren et al - 2009</td>
<td>To determine the reliability and validity of observational risk-critical tool in evaluating dynamic knee valgus during a drop-jump landing</td>
<td>40 female participants aged between 13-17. Recruited as a convenience sample from local soccer teams.</td>
<td>3 female physiotherapists with a mean clinical experience of 12±3 years. All 3 were mailed a 20 minute training CD prior to testing. No mention of who collected 3D data.</td>
<td>A drop-jump task. Participants were recorded dropping from a 31 cm box onto an embedded force plate then immediately performing a maximum vertical jump. 3 consecutive trials were conducted with a 10 second rest between trials. Throughout, the arms were kept in a ‘stop’ position. Test outcome variables: high risk (knee medial to 1°) or low risk (knee in line with 1°) toe. 3D data was collected simultaneously.</td>
<td>Physiotherapists’ ratings of each participant’s mean knee valgus motion was compared to 3-D motion analysis. The lead author gave each participant an expert rating of high risk or low risk. A ROC curve was constructed, linking the expert ratings with each participant’s mean knee valgus motion value. Desired sensitivity ≥80%; desired specificity ≥50%. A validity cut-off point of 10.87° knee valgus motion was chosen.</td>
<td>3D motion analysis revealed 15 participants to be truly high risk and 25 truly low risk. Sensitivity targets as calculated with the ROC output were met: by rater 1 at 3 time 1 (18%) and rater 2 at time 3 (18%) and rater 3 at time 1 (87%) and rater 1 at time 2 (87%). All raters exceeded hypothesized specificity targets (time 1 72%, 60% & 72%, time 2 64%, 64% & 72%). Although detecting some, examiners missed certain high-risk participants captured by 3D motion analysis.</td>
</tr>
<tr>
<td>Krosnhoj et al - 2007</td>
<td>To test the accuracy and precision of researchers in estimating kinematics from video sequences that resemble situations typically leading to ACL injuries.</td>
<td>3 test subjects that were 22, 23 & 25 years old. Gender not stated. Place of recruitment not stated.</td>
<td>6 observers experienced in both ACL injury research and visual video analysis. Professional/vocational background not stated.</td>
<td>The participants performed trials of running and side step cutting maneuvers. 27 composite video recordings, combining different camera views. Knee flexion/extension, knee varus/valgus, knee internal/external rotation, hip flexion/extension, hip adduction/abduction, hip internal/external rotation, approach velocity, vertical velocity, cutting angle, and internal/external rotation of the foot relative to the pelvis were assessed. 35 composite videos were then created from subject 3 for a training session. After the training session, the initial 27 videos were re-assessed. 3D data was collected simultaneously.</td>
<td>Differences between each of the analysts’ estimates and the marker-based measurements as the gold standard for each variable were measured. Paired t-tests were used to examine if the training led to significant improvements in the means (accuracy) for the differences between the estimates and the gold standard. For all analyses, an alpha level of 0.05 was used to denote statistical significance. For the categorical variables (joint motion), a kappa test was used to compare the agreement between the estimates and the gold standard. The strength of agreement was classified as follows: poor (value: <0.20), fair (0.21–0.40), moderate (0.41–0.60), good (0.61–0.80), and very good (0.81–1.00).</td>
<td>Substantial accuracy errors were found at initial testing. Mean error for knee flexion was 23.2°, indicating a consistent underestimation. Hip angles were also underestimated systematically by an average of 7°. Both hip and knee internal rotations were underestimated by 10° and 12°, respectively. Only small overall changes in the mean error and standard deviations were seen from the pre- to the post-training tests. Overall agreement between estimated and actual value of the joint motion was poor.</td>
</tr>
<tr>
<td>Onate et al - 2010</td>
<td>To assess the validity of a simple clinical jump-landing movement-assessment tool, the LESS, in identifying subjective 2-dimension jump-landing motion analysis compared with 3-dimensional high-speed motion-analysis assessment</td>
<td>19 female (mean age 19.5±8.4) soccer players conveniently sampled from a division 1 institution.</td>
<td>2 certified athletic trainers scored 3 trials. 1 trainer was considered an expert, with 15 years experience, and 1 was novice with less than 1 year of experience. The expert was involved in developing the test instrument and, thus, provided a 1 hour training session for the novice.</td>
<td>Participants were recorded performing a drop-jump task. The drop-jump was performed off a 30 cm box onto an embedded force plate that was 30 cm from the box. On landing with both feet, participants were instructed to jump as high as possible, with the initial landing being used for analysis. 3 trials were performed with a 1 minute rest between trials. The 1° of both raters trials was used for analysis. 3D data was collected simultaneously. The 3-point landing error scoring system was used to assess the quality of the drop-jump (see appendix 1 for criteria).</td>
<td>Only the expert rater’s scores were used to calculate the phi coefficient correlations between the LESS scores and the 3D analysis. An alpha level of P<0.05 was set a priori for statistical significance. Individual item analysis assessment of percent agreement was calculated and defined as poor (less than 20% agreement), moderate (51–79% agreement), or excellent (80% and above agreement)</td>
<td>For LESS validity, the rater achieved the following percentage agreement and phi correlation Item scores: 1=89.5% & Phi=0.718, 2=21% & Phi=0.118, 3=74% & Phi=0.330, 4=84% & Phi=0.595% & Phi=0.642% & Phi=0.745% & Phi=0.832%, 8=100% & Phi=0.974% & Phi=0.970% & Phi=0.818%, 12=100% & Phi=0.974% & Phi=0.970% & Phi=0.818%, 13=74% & Phi=0.456.</td>
</tr>
</tbody>
</table>
characteristics that are considered high risk, while ensuring those that are low risk are not falsely labelled as high. When provided, sensitivity and specificity values have been reported.

RESULTS
Study selection
The search was conducted in Cinahl, Cochrane, Medline, Scopus and SPORT Discus and returned a total of 1339 studies. At the first selection stage, all titles were reviewed which led to 1313 studies being excluded for not matching the inclusion criteria or as duplicates. Next, all remaining abstracts were read and on the basis of the information provided, 23 additional studies did not meet the inclusion criteria and were excluded. Following manuscript readings, the final three articles were accepted into the review. A further three articles were retrieved as a result of checking the accepted articles reference lists and the ‘cited by’ function in Scopus. (Figure 1).

Methodological quality evaluation results
The risks of bias and applicability concerns of the included studies are presented in Table 3. Several authors22,23 have highlighted the representational problems associated with generating an overall quality “score” of clinical trials. Therefore, instead of an overall score, this review has summarized the QUADAS-2 results, including high risk areas. Risk of bias was unclear for four studies due to a lack of information relating to recruitment strategies, inclusion and exclusion criteria, and subject anthropometrics. The two remaining studies were deemed

| Table 2. Study descriptions and results (continued) |
|---|---|
| Weeks et al -2012 | To determine kinematic predictors of perceived single-leg squat quality for experienced and student physiotherapists and assess inter- and intra-rater reliability of single-leg squat performance rating for experienced and student physiotherapists. 22 healthy young adults (13 men and 9 women; 23.8 ± 3.1 years of age). Place of recruitment not stated. Eight experienced post-graduate trained musculoskeletal physiotherapists and eight physiotherapy students in their penultimate year of study. No test training stated. Participants were recorded performing 3 separate single-leg squats on each leg. Start position was opposite knee flexed to approximately 90 degrees, arms folded across their chest, and looking ahead. Participants asked to squat as far as possible without losing balance but depth was not standardized. The 2nd squat of both legs was used for analysis. 3D data was collected simultaneously. Raters viewed each video twice at normal speed with no exceptions and rated each performance with a 10-point ordinal scale, a score of 1 representing ‘very poor’ and a score of 10 representing ‘very good’. All raters viewed and assessed the videos again 2 weeks later. Stepwise multiple linear regression analysis was used to determine joint kinematic predictors. T-tests compared initial and repeat ratings. |
| Whatman et al - 2013 | To investigate the ability of physiotherapists to visually rate knee and pelvic position in young athletes during lower extremity functional tests, specifically, (1) to investigate intra- and inter-rater reliability, (2) to investigate the validity of ratings and (3) to assess the influence of clinical experience and velocity of movement on rating ability. 23 (11 female) healthy young athletes (11±1 years old). All participants were part of a structured long term athlete development programme and competed in a variety of sports. Sixty six New Zealand registered physiotherapists agreed to visually rate the video recordings. No test training stated. Participants were recorded performing 3 lower extremity functional tests (squat, single-leg squat and Drop jump). All participants were given standardized verbal instructions. The researcher demonstrated each test. Practice for all tests was allowed. 3D data was collected simultaneously. For all tests, physiotherapists responded “yes” or “no” to the question, “Does the patella move medial to the 2nd toe?” Additionally for the single-leg squat, a “yes” or “no” response was recorded to the question, “Does the pelvis remain neutral in the frontal plane?” All video clips were also rated in the same manner by three musculoskeletal physiotherapists (all PhD or Masters qualified and all senior academics with an average of 15 years clinical experience). 26 of the initially selected physiotherapists repeated visual ratings 3-4 weeks later. Validity was assessed by comparing the peak 2D and 3D kinematic data between the groups based on the consensus, expert visual ratings (To be used in this instance). Athletes visually rated as having a patella medial to the 2nd toe alignment were likely to very likely to have increased peak 3D hip internal rotation (SKB=96%, DJ=98%, SLSB=99%) and abduction (SKB=93%, DJ=99%, SLSB=96%) in all tests. These athletes were also almost certain to have an increased peak PFP A in the small knee bend tests (SKB=100%, SLSB=100%) and very likely to have an increased peak frontal plane projection angle in the Drop Jump (DJ=98%). Athletes rated as not maintaining a neutral pelvis in the frontal plane were almost certain to have increased lateral pelvic tilt as measured in 3D and 2D (both 100%). |
to be high risk for using convenience samples. Risk of bias regarding index tests and reference standards was unclear for five of the studies, with only one clearly stating that both the index test and reference standard were interpreted without knowledge of the other’s results. All studies achieved a low risk rating for flow and timing. One study was considered to be an unclear risk in patient selection as age was the only information provided in relation to participant background, presentation and selection.

All six studies provided clear detail regarding the application of 3D motion analysis, so were considered low risk of reference standard applicability. In terms of the index tests, five of the studies scored specific joint positions (hip and/or knee and/or ankle) in the frontal, transverse and sagittal planes. However, one study used a general scale of one to ten with one representing ‘very poor’ and ten representing ‘very good’ and, as a result was considered a high risk of index test applicability. Another study’s index test applicability risk was unclear because instead of a direct comparison, participant observations were validated with expert ratings which, in turn, were validated by 3D motion analysis.

RESULTS

Single leg squat
Ageberg et al24 and Whatman et al9 asked observers to rate a single-leg squat by answering ‘yes’ or ‘no’ to whether the knee travelled medial to the 2nd toe during the movement. Observer results were then compared to the findings of 3D motion analysis. The Ageberg et al24 observers were anteriorly positioned to rate real-time movement and estimated that, of 25 participants, ten had knee-medial-to-foot. When compared to 3D findings, the ten knee-medial-to-foot participants had more hip internal rotation ($p = 0.049$) than those deemed to have knee-over-foot positioning ($10.6^\circ \pm 2.1^\circ$ compared to $4.8^\circ \pm 1.8^\circ$).

Observers for Whatman et al9 were asked to rate an anterior view recording of a single-leg squat and they achieved the target rating sensitivity value (>80%) but not the target mean specificity value (>50%). These results suggest that those with knee-medial-to-foot alignment were likely to be identified, but that those without medial knee movement had a higher chance of being incorrectly classified.

Weeks et al25 opted to use a ten point ordinal scale to rate the overall quality of a single-leg squat, with a score of one representing ‘very poor’ and ten representing ‘very good’. In this instance, observers rated an anterior view recording but were not given rating guidelines for the use of the scale. Instead, they were simply asked to rate the quality of the movement, which resulted in an average score of 6.4 ± 1.3. When compared to the findings of 3D motion analysis, variance in scores was predicted by peak knee flexion (men = $86.2^\circ \pm 13.0^\circ$, women = $71.5^\circ \pm 7.3^\circ$), peak knee medio-lateral displacement (men = $44.8^\circ \pm 13.9^\circ$, women = $52.2^\circ \pm 22.7^\circ$) and peak hip adduction (men = $15.5^\circ \pm 5.0^\circ$, women = $20.8^\circ \pm 7.1^\circ$). Results that suggest the accuracy of observation may depend on the joint or system of joints at which altered movement occurs.

Drop-jump task
Whatman et al9 and Ekegren et al26 compared observer ratings to the results of 3D motion analysis.
of a drop-jump task. Using the same knee-to-foot position rating as previously mentioned, observers in both studies rated anterior view recordings and correctly identified enough participants without knee-medial-to-foot alignment to achieve the target specificity values (≥50% in both). However, the target sensitivity value (≥80%) was only met twice (87% and 87%) for Ekegren et al26 and, with an overall score of 79%, was missed for Whatman et al9. These findings suggest that those with knee-medial-to-foot may go unidentified by observers of a drop-jump.

Onate et al27 used the 13-point LESS to rate a drop-jump. Medio-lateral right side and anterior view recordings were provided for observer rating. Observer agreement with 3D motion analysis was found to be excellent (above 80%) for six of the points, moderate (51%-79%) for four of the points and poor (under 50%) for three points. Of all the points, best agreement (100%) was found when grading ‘toes greater than 30° internal rotation in terms of foot position at initial contact’, and ‘stance width greater than shoulder width’. The three points that resulted in poor agreement were knee flexion at initial contact (21%), initial foot contact (42%) and lateral trunk flexion at initial contact (10%). Taken collectively, these findings suggest that the precision of observation may be dependent on body region under analysis.

Other functional tasks
Whatman et al9 compared observer assessment to 3D motion analysis findings of a two-legged squat with arms at the side. When asked to determine whether the knee travelled medial-to-foot from anterior view recordings, 88% sensitivity and 85% specificity scores were achieved; both above the author’s target values of ≥80% and ≥50% respectively. While the majority of physiotherapists (1st quartile ≥80% & ≥50%) achieved the target value, those with five years more experience improved rating accuracy (diagnostic odds ratio >2).

Krosshaug et al28 found substantial accuracy errors between observer ratings of video play-back and 3D findings of a running and side-step cutting manoeuvre. With one camera at postero-lateral left side, one at the right side (mid-stance) and one anteriorly placed, observers used three different views to rate the movement. Underestimations were seen in the mean error for knee flexion (-19°), hip flexion (at an average of 7°) and knee and hip internal rotation (by 10° and 12° respectively). Multivariate regression analysis showed that knee flexion estimate errors were significantly less when a side camera was present (p=0.02), when the right leg (the one closest to the camera) was analyzed (p=<0.001) and when knee flexion was lower than 30% (p=<0.001). Similarly, hip adduction/abduction estimate error was significantly lower when a front camera was included (p=0.017). In this instance, a significant relationship was observed between the mean estimate error and the true joint angle for 3-D valgus (p=<0.001) and hip flexion (p=<0.001). Overall, these results demonstrate that observation precision is also influenced by range of motion and the plane in which movement is observed.

DISCUSSION
The studies in this review explored levels of agreement between human visual and video observation and 3D motion analysis when assessing a range of functional tasks. Clinically acceptable results, in terms of the accuracy of observer ratings, were achieved when slower, speed-controlled movements such as a single-leg squat24,25,9 and a two-legged squat9 were rated. Conversely, lower levels of agreement were evident when faster, more explosive movements such as a drop-jump26,27,9 or running and cutting manoeuvres28 were assessed. While some tasks may have been easier to rate than others, several additional factors deserve consideration. Varying task instruction, for similar tasks, may have influenced rating accuracy. Furthermore, certain characteristics of the observers used and the chosen samples may have affected final sensitivity and specificity values.

The accurate rating of a functional task will be strongly influenced by how far the movement under scrutiny varies from what is considered normal. Movement that borders on what is considered to be normal may be harder to rate whereas variations, from normal, of a larger magnitude, become more obvious and easier to rate. It may also be fair to assume that, as the difficulty level of a task increases, so too does the likelihood of movement
inexperienced (82% [CI 71-94]) and novice counterparts (80% [CI63-92]).17 The variance associated with lower levels of agreement, whether intra or inter-rater, may increase the likelihood of poor movement being rated as good and vice versa.

In this review the experience levels of observers ranged from second-year students through to expert raters with 15 years of experience and post-grad qualifications. Interestingly, of the studies that compared novice to expert ratings,9,25,27 only Whatman et al9 noticed a significant difference in drop-jump ratings, with experienced physiotherapists achieving a substantial-to-excellent agreement (percentage agreement 82-90%, first order agreement co-efficient 0.65-0.81) compared to the fair-to-substantial agreement achieved by the less experienced group (PA: 76-86%, AC1: 0.56-0.78).

Previous investigators have used expert rating35 and 3D motion analysis36 to demonstrate that individuals with greater hip abduction, knee flexion and knee extension torques are less likely to demonstrate aberrant hip and/or knee biomechanics. Therefore, the baseline activity and strength levels of the participants involved in the studies may have determined the ease with which observers could define lower extremity kinematics and, thus, the overall sensitivity and specificity values. In this review, the three studies rating a drop-jump all recruited active individuals,9,26,27 From this group, both Whatman et al9 and Ekegren et al26 reported acceptable levels of sensitivity and specificity for the task. Of the three studies rating a single-leg squat, Whatman et al9 (who used an athletic population) and Ageberg et al24 (who used a mixed cohort of recreationally physically active and not physically active) reported activity levels of their participants. Weeks et al25 did not provide this detail. As only Whatman et al9 offer single-leg squat sensitivity and specificity values, it remains hypothetical whether or not such values would be similar in the studies using mixed populations.

When selecting a task for functional assessment, consideration should be given to the functional relationship of the task movement and the underlying activity the person partakes in.38 Running and cutting manoeuvres were, in this review, arguably, the movements that come closest to resembling sporting
activity, however, they were also found to demonstrate the worst rater agreement with 3D data. With significant underestimations seen in a variety of hip and knee movements, it is more likely that, when assessing running-and-cutting, poor movement would be rated as good and that sensitivity values would be unacceptable.

Whatman, Hing and Hume39 used 3D motion analysis to explore the relationship between five forms of squatting and jogging. In doing so they found a strong correlation between peak hip, knee and ankle kinematics during the tests and jogging ($r = 0.53$-0.93) and concluded that squat tests may help physiotherapists determine dynamic lower extremity alignment and risk of injury within jogging cohorts. These findings, suggest that various forms of squatting may offer a strong alternative to sports specific movement when it comes to functional testing.

This review has several limitations that must be considered. The heterogeneity of populations, tasks and outcomes used precluded a quantitative review such as a meta-analysis. Furthermore, the small number of studies identified limits the generalizability of the results. This review focussed on lower extremity kinematics during functional screening. However, in practical terms, this compartmentalised approach may be over-simplistic and lead to misinterpretations of injury risk. Those assessing functional tasks must also understand the influence of and evaluate trunk positioning and whole-body movement. Finally, it is important to recognise that the majority of the studies in this review used 2D video-playback for observation. If the movements had been rated live, in real-time 3D, the results may have been different.

CONCLUSION

Lower extremity functional 3D motion analysis is commonly used to identify movement patterns that increase the likelihood of non-contact injuries. However, the process can be expensive, resource-dependent, and time-consuming. A growing body of evidence exists, implying that human observation of functional movement may be a reliable alternative to high technology. Although the reliability of observation has been established, only a few studies have attempted to validate human observation by establishing levels of agreement with the gold standard; 3D motion analysis. From the existing literature, the results of this systematic review demonstrate that the validity of human observation depends on several performance and rating factors. Assessing slower, speed-controlled movements such as a two-legged squat or a single leg squat produced acceptable levels of agreement with 3D. However, agreement was poorer with faster, explosive movements such as drop-jumps, running and cutting manoeuvres. Although, the pelvis, hip, knee and foot positions are often used to classify the quality of functional movement, trunk and overall body positioning impact heavily on lower extremity function and, thus, demand attention. These conclusions need to be considered in light of the risk of bias associated with the included studies. Further high quality studies are needed before a definitive statement on the accuracy of visual assessment of faulty movement patterns of the lower limb can be made.

REFERENCES

7. Hewett TE, Myer GD & Ford KR. Anterior cruciate ligament injuries in female athletes. Part 1,

